
Rea
hing The Ground With Lightning (draft

0.1)

Rusty Russell <rusty�blo
kstream.
om>

July 18, 2015

Abstra
t

The Lightning Network (as proposed by Joseph Poon and Thaddeus

Dryja[5℄) requires some new sighash modes in order to work with Bit
oin.

This paper proposes a simpli�ed variant whi
h requires only modi�
a-

tions whi
h are already proposed for bit
oin, and slightly simpli�es the

revo
ation of existing
ontra
ts.

Keywords: bit
oin, lightning, revo
ation hash, HTLC

1 Introdu
tion

The Bit
oin network[3℄ allows the transfer of value between peers using trans-

a
tions. Ea
h bit
oin transa
tion
onsists of one or more outputs (typi
ally

spe
ifying the hash of the re
ipient's key), and one or more inputs (typi
ally

ontaining the re
ipient's key and a signature of the transa
tion). Thus one

transfers value to another peer by
reating a transa
tion whi
h spends one or

more outputs and
reates an output whi
h the re
ipient
an spent using their

private key.

While su
h
ryptographi
 transfer of value is near-instantaneous, ensuring

that the transa
tion has been in
luded in the
onsensus of the shared ledger (aka.

blo
k
hain)
reates delays ranging from a few minutes to hours, depending on

the level of reliability required. In
lusion in the blo
k
hain is performed by

miners, who preferentially in
lude transa
tions paying greatest fee per byte.

Thus using the blo
k
hain dire
tly is slow, and too expensive for genuinely

small transfers (typi
al fees are a few
ents).

2 Previous Work

To work around the bit
oin network's delays and fees, several forms of o�-
hain

transa
tion patterns have been developed, where series of transa
tions are sent

dire
tly between two parties, with only the initial opening transa
tion and �nal

redemption transa
tion being in
luded in the bit
oin blo
k
hain.

1

The Lightning Network paper proposed a solution, but at the
ost of intro-

du
ing new signature variants (sighash ops). Adding a new signature op
ode

would allow many other improvements

12

but that is pre
isely why it's a matter

for longer term resear
h and unlikely to be deployed in Bit
oin in the immediate

future.

2.1 Payment Channels

The
on
ept of payment
hannels (sometimes
alled mi
ropayment
hannels) has

existed in various forms for several years[1℄. The simplest form is as follows, and

allows A to qui
kly and
heaply pay B a stream of slightly in
reasing amounts:

1. A
reates an an
hor transa
tion to open the
hannel whi
h:

(a) Outputs $1,

(b) Requires the signatures of both A and B to redeem.

2. A sends the transa
tion ID of the an
hor, whi
h output to spend, and the

amount of that output to B.

3. B signs a �refund� transa
tion whi
h:

(a) spends that an
hor output,

(b) outputs the $1 to an address
ontrolled by A, and

(
)
an only be spent in 24 hours (using the lo
ktime �eld)

4. B sends A the refund transa
tion.

5. A broad
asts the an
hor transa
tion, knowing she
an get the funds ba
k

in 24 hours using the refund if B vanishes.

A
an now pay B 1
ent by signing a new
ommitment transa
tion to send to

B, whi
h spends the an
hor output and has two outputs: one pays A 99
, and

the other pays B 1
ent. A
an later pay B another
ent by signing another

transa
tion (�updating the
ommitment�) for B whi
h pays A 98
 and B 2
, et
.

At any point, B
an �
lose the
hannel� by signing and broad
asting the

latest
ommitment transa
tion to
olle
t the money. B should do this before 24

hours pass, otherwise A
an use the refund transa
tion.

2.1.1 Limitations Of Simple Payment Channels

Simple
hannels have several limitations:

Single re
ipient. A new re
ipient requires a new
hannel, whi
h must wait for

onsensus on the an
hor transa
tion.

1

S
hnorr signatures o�er faster bat
h validation, a

ording to

https://github.
om/ElementsProje
t/elementsproje
t.github.io#s
hnorr-signature-validation

2

DER en
oding adds unne
essary bytes and is a
ause of malleability

2

One way. They
annot be reversed: A
an sign a transa
tion whi
h pays B less

money than the last, but B
ould still broad
ast the older transa
tion.

Vulnerable to malleability. The an
hor transa
tion
ould be altered in sev-

eral ways (without invaliding it
ompletely) before in
lusion in the blo
k
hain:

this alters its transa
tion id and thus makes the refund transa
tion unus-

able.

This last issue is a
ommon one with
omplex bit
oin transa
tions, and BIP62[7℄

is proposed to prevent non-signing parties from being able to malleate transa
-

tions.

2.2 Generalized Payment Channels Using Revo
able Trans-

a
tions

The Lightning network introdu
ed generalized, bi-dire
tional payment
hannels,

referred to here as Poon-Dryja
hannels. These use a mutual an
hor, whi
h

both
reate to provide the
hannel funding, and a symmetri
al pair of updatable

ommitment transa
tions rather than the single transa
tion used in the one-way

hannel
ase.

[FIXME: Insert Figure 1 from LN draft 0.5℄

To update the
ommitment, A sends B a signature for B's new
ommitment

transa
tion, and B sends A a signature for A's new
ommitment transa
tion.

As before, ea
h
ommitment transa
tion
ontains two outputs, one for A

and one for B; but A's
ommitment transa
tion output to itself is en
umbered

by an additional restri
tion (as is B's output to itself). Instead of paying A

dire
tly, needs both A and B's signature. B provides su
h a signature, but on

a �
ommitment refund� transa
tion whi
h
an only be spent after a delay (40

days in the paper). Thus if A
loses the
hannel by signing and broad
asting

its
ommitment transa
tion, B
an
olle
t its output immediately, but A must

wait 40 days.

This delay en
umbering the output is what makes the
ommitment trans-

a
tion revo
able; on
e an updated
ommitment transa
tion is agreed upon, the

previous
ommitment transa
tion pair is revoked by sharing the private keys

needed to redeem those en
umbered outputs. Thus, A shares its (throwaway)

private key, and B shares its throwaway private key. If A were to sign and broad-

ast a revoked
ommitment transa
tion, B
ould not only immediately spend

its own output, but it has both A's key and its own to generate a transa
tion

whi
h
an spend the output whi
h would normally go to A after a delay.

2.3 Hashed Timelo
k Contra
ts (HTLCs)

The Lightning Network paper used a set of 4 transa
tions to implement a hashed

timelo
k
ontra
t, whi
h guarantees payment of a given amount on presentation

of a se
ret value R within a
ertain timespan. Any number of these
ould be

a
tive within a generalized
hannel, and this is what allows a network to form:

3

Node A o�ers node B $1 for the se
ret within 2 days, node B o�ers node C 99

for the se
ret within 1 day, et
.

[FIXME: Insert �gure 2 from LN Draft 0.5 ℄

3 Enhan
ements To Lightning

This paper proposes various modi�
ations.

3.1 Poon-Dryja Generalized Payment Channel Modi�
a-

tions

This paper proposes three of these.

3.1.1 Pla
ing Timeout in Output S
ript

Rather than using a separate transa
tion to enfor
e the delay, BIP65[6℄ proposes

an OP_CHECKLOCKTIMEVERIFY whi
h allows an output to spe
ify the

minimum time at whi
h it
an be spent. With this enhan
ement, we no longer

need a separate �
ommitment refund� transa
tion. The
ommitment transa
tion

to-self output s
ript would be a little more
omplex:

• A and B's signature, OR

• A's signature and OP_CHECKLOCKTIMEVERIFY <40 days>

3.1.2 Using Relative Lo
ktime

The Poon-Dryja
hannel uses a 40 day lo
ktime, be
ause transa
tion lo
ktime

is absolute. Before 40 days the
hannel must be
losed otherwise spending

a revoked transa
tion and immediately following it with the
ommit refund

transa
tion is possible.

A proposal to extend output s
ripts to spe
ify a minimum relative time

before they
an be spent[2℄
an redu
e this timeout (say, to 1 day) and avoid

pla
ing a lifetime limit on the
hannel, like so:

• A and B's signature, OR

• A's signature and OP_CHECKSEQUENCEVERIFY <1 day>

3.1.3 Using Revo
ation Preimages Instead of Private Keys

There's a slightly more intuitive and more e�
ient method than ex
hanging

private keys, whi
h is to reuse a te
hnique of hash preimages whi
h is already

needed for HTLCs (as we see later).

Instead of using a private keys, B uses knowledge of a hash preimage as well

as its signature to steal funds from a revoked
ommitment transa
tion. Thus,

to
reate a
ommitment transa
tion ea
h side provides a hash value; to revoke

a
ommitment transa
tion it provides the prehash image.

4

The resulting
ommitment transa
tion to-self output now looks like:

• B's signature and a preimage whi
h hashes to <revo
ation-hash>, OR

• A's signature and OP_CHECKSEQUENCEVERIFY <1 day>

This
an be expressed fairly easily in bit
oin's s
ript-based s
ripting language,

as annotated in 4. The �nal pair of
ommitment transa
tion outputs is shown

in Figure 1.

Commit

Tx A
Commit

Tx B

SIG A & B SIG A & B

SIG B

REVOCATION-A & SIG B

OR

OP_CSV & SIG A

SIG A

REVOCATION-B & SIG A

OR

OP_CSV & SIG B

Figure 1: Commitment Transa
tion Outputs

3.2 Channel Opening Modi�
ations

The method of
reating the �rst
ommitment transa
tion before signing the

an
hor transa
tion (as proposed in the paper) presents two problems in pra
ti
e:

1. The an
hor transa
tion id required for the
ommitment input will only be

known one the an
hor is signed, and

2. The an
hor transa
tion
an be malleated by either party before entering

the blo
k
hain, rendering the
ommitment input unusable.

The last of these is parti
ularly perni
ious, as BIP62 doesn't solve it: signa-

tories
an always re-sign a transa
tion, hen
e altering its transa
tion ID. The

paper proposes new SIGHASH �ags whi
h mitigate this problem, but we are

attempting to avoid that.

For ease of understanding, we develop the proto
ol in stages. Please note

that the intermediary proposals are inse
ure!

3.2.1 Separate An
hor Transa
tions

To avoid the problem of needing all an
hor signatures to derive the an
hor

transa
tion ID to
reate the
ommitment transa
tion input, we split the an
hor

into two transa
tions; thus A knows its an
hor transa
tion ID, and B knows its

an
hor transa
tion ID as shown in Figure 2.

5

Anchor A Anchor B

Commit

Tx A

SIGA & SIGB

Commit

Tx B

SIG A & B SIG A & B

SIGA & SIGB

Figure 2: Simplisti
 Dual An
hor Design

This form allows A and B to
reate
ommitment transa
tions whi
h spends

the an
hors outputs by ex
hanging an
hor transa
tion IDs. It has the problem

that if the other party does not then broad
ast its an
hor transa
tion, we
annot

spend the
ommitment transa
tion, and our own an
hor funds are stu
k.

Thus we introdu
e an es
ape transa
tion, whi
h lets us regain our an
hor

funds in that
ase, as shown in Figure 3.

6

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

Escape B

Commit

Tx B

SIG A & B SIG A & B

SIGA

SIGA & SIGB SIGA & SIGB

SIGA & SIGB

SIGB

Figure 3: Dual An
hor With Simple Es
ape Transa
tions

However, this es
ape transa
tion would let either side remove its funds from

the
hannel at any time, whi
h would make the
hannel inse
ure. Thus, after the

ommitment transa
tions have been established, we want to revoke the es
ape

transa
tions. We
an do the same way we did for the
ommitment transa
tion

revo
ation; by pla
ing restri
tions on the �to-me� output. In parti
ular, adding

a delay if paying ba
k to the an
hor owner, and allowing it to be spent by the

other party immediately if they possess the revo
ation preimage, as shown in

Figure 4.

7

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

Escape B

Commit

Tx B

SIG A & B SIG A & B

OP_CSV & SIGA

OR

RIMAGE-A & SIGB

SIGA & SIGB SIGA & SIGB

SIGA & SIGB

OP_CSV & SIGB

OR

RIMAGE-B & SIGA

Figure 4: Dual An
hors With Revo
able Es
ape Transa
tions

Unfortunately, this revo
ation is not a
omplete solution; if B uses its es
ape

transa
tion, A
an
olle
t B's an
hor funds, but it has no way of
olle
ting its

own! The
ommitment transa
tion
annot be used, as one of its inputs has been

spent by B's es
ape transa
tion. A's own es
ape transa
tion has been revoked,

so B would simply steal the funds.

Thus we need an additional
onstru
tion, su
h that using one es
ape trans-

a
tion immediately unlo
ks the other an
hor funds for its owner. To do this, we

ensure that the es
ape transa
tion is for
ed to reveal a se
ret, whi
h is a fairly

well-established te
hnique[4℄. The an
hor transa
tion is modi�ed to either re-

quire both signatures (for the
ommitment transa
tion), or both signatures and

the se
ret (for the es
ape transa
tion), as shown in Figure 5.

8

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

OR

SIGA & SIGB & SECRET-A

Escape B

Commit

Tx B

SIG A & B SIG A & B

OP_CSV & SIGA

OR

RIMAGE-A & SIGB

SIGA & SIGB & SECRET-A SIGA & SIGB & SECRET-B

SIGA & SIGB

OR

SIGA & SIGB & SECRET-B

OP_CSV & SIGB

OR

RIMAGE-B & SIGA

Figure 5: Se
ret Revelation by Es
ape Transa
tions

That revealed se
ret
an be used with the other alternative: the fast es
ape

transa
tion. This reveals the se
ret just like the es
ape transa
tion, but its

output is immediately usable if one knows the other side's se
ret. This is shown

in Figure 6. Thus, if the B broad
asts its es
ape transa
tion after it has been

revoked, A
an (after ensuring es
ape B is su�
iently deep in the blo
k
hain)

broad
ast its fast es
ape transa
tion and use B's se
ret to immediately spend

the output.

On the other hand, if B broad
asts its fast es
ape transa
tion without know-

ing A's se
ret, A
an simply wait for the timeout and spend the fast es
ape

output, then use its own fast es
ape transa
tion and B's se
ret to re
over its

own an
hor funds as well.

9

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

OR

SIGA & SIGB & SECRET-A

Escape B

Commit

Tx B

SIG A & B SIG A & B

OP_CSV & SIGA

OR

RIMAGE-A & SIGB

SIGA & SIGB & SECRET-A SIGA & SIGB & SECRET-B

SIGA & SIGB

OR

SIGA & SIGB & SECRET-B

OP_CSV & SIGB

OR

RIMAGE-B & SIGA

Fast Esc A

OP_CSV & SIGB

OR

SECRET-B & SIGA

SIGA & SIGB & SECRET-A

Fast Esc B

OP_CSV & SIGA

OR

SECRET-A & SIGB

SIGA & SIGB & SECRET-B

Figure 6: Final Dual An
hor Design

The �nal s
ripts are shown in 4.

3.2.2 Disadvantages of The Dual An
hor Approa
h

Unlike the mutual an
hor approa
h, use of es
ape transa
tions is not outsour
a-

ble: you
annot have an untrusted third party whi
h
an monitor the network

for the other sides' revoked es
ape transa
tion and respond with your own es-

ape transa
tion. If you were to provide a third party with your fast es
ape

transa
tion, you would ne
essarily provide it with the se
ret, whi
h it
ould

give to B.

3.3 Hashed Timelo
k Contra
t (HTLC) Modi�
ation

Using the same te
hniques used above, we
an
ondense ea
h HTLC into a single

output s
ript on the
ommitment transa
tion. This output is spendable under

three
onditions:

1. Re
ipient knows the R value (funds go to re
ipient), or

2. The HTLC has timed out (funds return to sender), or

3. The Commit transa
tion has been revoked (funds to go other side).

Unlike the original paper, we use revo
ation preimages instead of sharing tem-

porary private keys. If we also use OP_CHECKLOCKTIMEVERIFY and

OP_CHECKSEQUENCEVERIFY it is fairly simple to express these
ondi-

tions in a single output s
ript.

10

For ea
h dire
tion the HTLC
ould transfer funds, there are two s
ripts

required; one for A's
ommitment transa
tion and one for B's
ommitment

transa
tion. It's also a requirement that the
onditions whi
h allow payment to

oneself be delayed, to give the other side an opportunity to take the funds in

ase of revo
ation. This is shown in �gure 7.

Commit

Tx A
Commit

Tx B

SIG A & B SIG A & B

SIG B

REVOCATION-A & SIG B

OR

OP_CSV & SIG A

SIG A

REVOCATION-B & SIG A

OR

OP_CSV & SIG B

R-VA�U� � ����PAY��

OR

H������T�	U� & SIG-PAY�

OR

REVOCATION-A & SIG B

R-VA�U� � ����PAY��

OR

H������T�	U� & SIG-PAY�

OR

REVOCATION-B & SIG A

Figure 7: HTLC Using Revo
ation Preimages, OP_CLV and OP_CSV

The s
ripts for this
an be found in 4.

4 Con
lusions

Se
ret preimages
an repla
e exposure of temporary private keys in the Light-

ning Network
onstru
ts with no loss of generality, and a slight gain in simpli
ity.

The use of s
ript
onditionals to enfor
e timeouts instead of using separate

pre-signed transa
tions redu
es an HTLC from a set of four dual-signed trans-

a
tions to a single (more
omplex) output s
ript, and additionally avoids any

requirement for new CHECKSIG �ags for HTLCs.

By using a dual an
hor and es
ape transa
tions,
hannel establishment
an

also avoid new CHECKSIG �ags, though it loses the important ability to out-

sour
e the enfor
ement of
hannel
ontra
t terms.

A
knowlegments

Thanks to Joseph Poon for designing the es
ape/fast-es
ape dual-an
hor method,

as well as �nding a �aw in my original formulation of the dual an
hor
onstru
t

and reviewing an earlier draft of this paper. Also thanks to him and Thaddeus

Dryja for the initial eye-opening Lightning Network paper.

11

Referen
es

[1℄ Rapidly-adjusted (mi
ro)payments to a pre-determined party. https://en.

bit
oin.it/wiki/Contra
t#Example_7:_Rapidly-adjusted_.28mi
ro.

29payments_to_a_pre-determined_party.

[2℄ Mark Friedenba
h. [bit
oin-development℄ [BIP draft℄
onsensus-enfor
ed

transa
tion repla
ement signalled via sequen
e numbers. http://lists.

linuxfoundation.org/pipermail/bit
oin-dev/2015-June/008452.

html.

[3℄ Satoshi Nakamoto. Bit
oin: A peer-to-peer ele
troni

ash system, 2008.

[4℄ Tier Nolan. Alt
hains and atomi
 transfers. https://bit
ointalk.org/

index.php?topi
=193281.msg2224949#msg2224949.

[5℄ Joseph Poon and Thaddeus Dryja. The bit
oin lightning net-

work draft version 0.5, 2015. http://lightning.network/

lightning-network-paper-DRAFT-0.5.pdf.

[6℄ Peter Todd. OP_CHECKLOCKTIMEVERIFY. https://github.
om/

bit
oin/bips/blob/master/bip-0065.mediawiki.

[7℄ Pieter Wuille. Dealing with malleability. https://github.
om/bit
oin/

bips/blob/master/bip-0062.mediawiki.

Appendix A: Transa
tion S
ripts

All outputs are expressed as pay-to-s
ripthash outputs, where the redeeming

input provides the redeems
ript. Where a redeem-hash value is optional, it is

generally supplied: for example, if we want to pay to A if a preimage is supplied

and B if no preimage is supplied, we expe
t the input s
riptsig to provide two

arguments in both
ases (generally a zero in the se
ond
ase). This saves an

extra test (of form �OP_DEPTH <N> OP_EQUAL�), at
ost of a single byte

in the input s
ript.

An
hor Transa
tion

The an
hor inputs are whatever the node
hooses.

An
hor Output Redeems
ript

The an
hor output is a pay to s
ript hash, with a redeems
ript as follows:

OP_IF They put a non-zero here if they're supplying the se
ret

OP_HASH <SECRET-A-HASH> OP_EQUALVERIFY Che
k

se
ret is
orre
t.

12

https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

OP_ENDIF

2 <KEY-A> <KEY-B> 2 OP_CHECKMULTISIG Make sure A and

B have signed.

Es
ape Transa
tion

The es
ape transa
tion for A spends A's an
hor output and reveals A's se
ret.

Similarly for B.

Es
ape Input S
ript

<SIG-A> <SIG-B> SECRET 1 {<ANCHOR-REDEEMSCRIPT>}

Es
ape Output Redeems
ript

This allows two paths: one for the other side to use the revo
ation image, and

one for this side to get their funds ba
k after a delay. This show's A's s
ript,

but B's is the same with A and B ex
hanged.

OP_HASH160 <RHASH-A> OP_EQUAL Che
k if the top of sta
k is

the revo
ation image.

OP_IF

<KEY-B> Funds for B.

OP_ELSE It's A getting their funds ba
k

<DELAYTIME> OP_CHECKSEQUENCEVERIFY OP_DROP

Ensure delay.

<KEY-A> Needs to be signed by A.

OP_ENDIF

OP_CHECKSIG Make sure it's signed
orre
tly.

Spending The Es
ape Output

Either B using a revo
ation preimage:

<SIG-B> <REVOCATION-IMAGE-A> {<ESCAPE-REDEEMSCRIPT>}

Or A using after a timeout:

<SIG-A> 0 {<ESCAPE-REDEEMSCRIPT>}

13

Fast-Es
ape Transa
tion

Fast-Es
ape Input S
ript

This is identi
al to the normal es
ape input s
ript.

<SIG-A> <SIG-B> SECRET 1 {<ANCHOR-REDEEMSCRIPT>}

Fast-Es
ape Output Redeems
ript

This allows two paths: one for this side to use the other side's se
ret (revealed

by them using an es
ape transa
tion), and one for the other side to
laim this

side's an
hor funds after a delay. This show's A's s
ript, but B's is the same

with A and B ex
hanged.

OP_HASH <SECRET-B-HASH> OP_EQUAL If top argument is B's

se
ret

OP_IF

<KEY-A> For A

OP_ELSE B gets it if A doesn't know the se
ret.

<DELAYTIME> OP_CHECKSEQUENCEVERIFY OP_DROP

Ensure delay.

<KEY-B> Needs to be signed by B.

OP_ENDIF

OP_CHECKSIG Make sure it's signed
orre
tly.

Spending The Fast-Es
ape Output

Either A using a B's se
ret revealed by B using its own es
ape transa
tion:

<SIG-A> <SECRET-B> {<FAST-ESCAPE-REDEEMSCRIPT>}

Or B using after a timeout:

<SIG-B> 0 {<FAST-ESCAPE-REDEEMSCRIPT>}

Commitment Transa
tions For Generalized Channels

These examples are for A's Commitment Transa
tion; swit
h A and B to get

B's
ommitment transa
tion.

14

Commitment Input S
ript

The
ommitment transa
tion has two inputs; one whi
h spends ea
h an
hor

output. The two zeroes indi
ate it is not revealing the se
ret:

<SIG-A> <SIG-B> 0 0 {<ANCHOR-REDEEMSCRIPT>}

Commitment Transa
tion Output Redeems
ripts

One output pays B's funds to B as normal (eg. pay to s
ripthash �<KEY-B>

OP_CHECKSIG�). The other output pays A's funds: either to B if they supply

the revo
ation preimage, or to A after a delay. This is the redeems
ript:

OP_HASH160 <COMMIT-REVOCATION-HASH> OP_EQUAL Did

they supply revo
ation preimage?

OP_IF

<B-KEY> To B.

OP_ELSE

<LOCKTIME> OP_CHECKSEQUENCEVERIFY OP_DROP

Spending transa
tion must be after timeout

<A-KEY> To A.

OP_ENDIF

OP_CHECKSIG Signature must be
orre
t.

Spending Commitment Output

Either B using a revo
ation preimage:

<SIG-B> <COMMIT-REVOCATION-IMAGE-A> {<COMMITMENT-REDEEMSCRIPT>}

Or A using after a timeout:

<SIG-A> 0 {<COMMITMENT-REDEEMSCRIPT>}

Hash Lo
ked Transa
tion Commitments

There are two styles of
ommitment transa
tion outputs for HTLCs: a �sender�

and �re
eiver�
ase. The output is a pay-to-s
ript-hash, so the redeems
ripts

are shown below.

These s
ripts show A as the sender, and B as the re
eiver: ex
hange A and

B for the reverse.

15

HTLC Sender Redeems
ript

OP_HASH160 OP_DUP Repla
e top element with two
opies of its hash

<R-HASH> OP_EQUAL Test if they supplied the HTLC R value

OP_SWAP <COMMIT-REVOCATION-HASH> OP_EQUAL OP_ADD

Or the
ommitment revo
ation hash

OP_IF If any hash mat
hed.

<KEY-B> Pay to B.

OP_ELSE Must be A, after HTLC has timed out.

<HTLC-TIMEOUT> OP_CHECKLOCKTIMEVERIFY OP_DROP

Ensure (absolute) time has passed.

<DELAY> OP_CHECKSEQUENCEVERIFY OP_DROP Delay

gives B enough time to use revo
ation if it has it.

<KEY-A> Pay to A.

OP_ENDIF

OP_CHECKSIG Verify A or B's signature is
orre
t.

HTLC Re
eiver Redeems
ript

OP_HASH160 OP_DUP Repla
e top element with two
opies of its hash

<R-HASH> OP_EQUAL B redeeming the
ontra
t, using R preimage?

OP_IF

OP_DROP Remove extra hash

<KEY-A> Pay to B

OP_ELSE

<COMMIT-REVOCATION-HASH> OP_EQUAL If the
ommit

has been revoked.

OP_NOTIF If not, you need to wait for timeout.

<HTLC-TIMEOUT> OP_CHECKLOCKTIMEVERIFY OP_DROP

Ensure (absolute) time has passed.

OP_ENDIF

<KEY-A> Pay to A

OP_ENDIF

OP_CHECKSIG Verify A or B's signature is
orre
t.

16

Redeeming A HTLC Output

To redeem an HTLC, the re
ipient one provides the preimage R, and their

signature. In our example above, B
an redeem the HTLC:

<SIG-B> <HTLC-R-VALUE> {<HTLC-REDEEMSCRIPT>}

Claiming a Timed-out HTLC

To
laim a timed-out HTLC, the sender supplies a zero value (whi
h is ni
e and

short, but fails to hash to any of the revo
ation hashes), and their signature. In

our example above, A
an
laim the timed-out HTLC:

<SIG-A> 0 {<HTLC-REDEEMSCRIPT>}

Claiming A HTLC Output For A Revoked Commitment Transa
tion

If either side publishes a
ommitment transa
tion whi
h has been revoked, we

an use the revo
ation preimage they supplied to spend all the outputs. This

example shows A
laiming the HTLC output if B broad
asts a revoked
ommit-

ment transa
tion:

<SIG-A> <COMMIT-REVOCATION> {<HTLC-REDEEMSCRIPT>}

17

	1 Introduction
	2 Previous Work
	2.1 Payment Channels
	2.1.1 Limitations Of Simple Payment Channels

	2.2 Generalized Payment Channels Using Revocable Transactions
	2.3 Hashed Timelock Contracts (HTLCs)

	3 Enhancements To Lightning
	3.1 Poon-Dryja Generalized Payment Channel Modifications
	3.1.1 Placing Timeout in Output Script
	3.1.2 Using Relative Locktime
	3.1.3 Using Revocation Preimages Instead of Private Keys

	3.2 Channel Opening Modifications
	3.2.1 Separate Anchor Transactions
	3.2.2 Disadvantages of The Dual Anchor Approach

	3.3 Hashed Timelock Contract (HTLC) Modification

	4 Conclusions

