Reaching The Ground With Lightning (draft
0.1)

Rusty Russell <rusty@blockstream.com >

July 18, 2015

Abstract

The Lightning Network (as proposed by Joseph Poon and Thaddeus
Dryja[5]) requires some new sighash modes in order to work with Bitcoin.
This paper proposes a simplified variant which requires only modifica-
tions which are already proposed for bitcoin, and slightly simplifies the
revocation of existing contracts.

Keywords: bitcoin, lightning, revocation hash, HTLC

1 Introduction

The Bitcoin network[3] allows the transfer of value between peers using trans-
actions. Each bitcoin transaction consists of one or more outputs (typically
specifying the hash of the recipient’s key), and one or more inputs (typically
containing the recipient’s key and a signature of the transaction). Thus one
transfers value to another peer by creating a transaction which spends one or
more outputs and creates an output which the recipient can spent using their
private key.

While such cryptographic transfer of value is near-instantaneous, ensuring
that the transaction has been included in the consensus of the shared ledger (aka.
blockchain) creates delays ranging from a few minutes to hours, depending on
the level of reliability required. Inclusion in the blockchain is performed by
miners, who preferentially include transactions paying greatest fee per byte.

Thus using the blockchain directly is slow, and too expensive for genuinely
small transfers (typical fees are a few cents).

2 Previous Work

To work around the bitcoin network’s delays and fees, several forms of off-chain
transaction patterns have been developed, where series of transactions are sent
directly between two parties, with only the initial opening transaction and final
redemption transaction being included in the bitcoin blockchain.

The Lightning Network paper proposed a solution, but at the cost of intro-
ducing new signature variants (sighash ops). Adding a new signature opcode
would allow many other improvements'? but that is precisely why it’s a matter
for longer term research and unlikely to be deployed in Bitcoin in the immediate
future.

2.1 Payment Channels

The concept of payment channels (sometimes called micropayment channels) has
existed in various forms for several years[1]. The simplest form is as follows, and
allows A to quickly and cheaply pay B a stream of slightly increasing amounts:

1. A creates an anchor transaction to open the channel which:

(a) Outputs $1,
(b) Requires the signatures of both A and B to redeem.

2. A sends the transaction ID of the anchor, which output to spend, and the
amount of that output to B.

3. B signs a “refund” transaction which:

(a) spends that anchor output,
(b) outputs the $1 to an address controlled by A, and
(c) can only be spent in 24 hours (using the locktime field)

4. B sends A the refund transaction.

5. A broadcasts the anchor transaction, knowing she can get the funds back
in 24 hours using the refund if B vanishes.

A can now pay B 1 cent by signing a new commitment transaction to send to
B, which spends the anchor output and has two outputs: one pays A 99¢, and
the other pays B 1 cent. A can later pay B another cent by signing another
transaction (“updating the commitment”) for B which pays A 98¢ and B 2c, etc.

At any point, B can “close the channel” by signing and broadcasting the
latest commitment transaction to collect the money. B should do this before 24
hours pass, otherwise A can use the refund transaction.

2.1.1 Limitations Of Simple Payment Channels
Simple channels have several limitations:

Single recipient. A new recipient requires a new channel, which must wait for
consensus on the anchor transaction.

LSchnorr signatures offer faster batch validation, according to
https://github.com/ElementsProject/elementsproject.github.io#schnorr-signature-validation
2DER encoding adds unnecessary bytes and is a cause of malleability

One way. They cannot be reversed: A can sign a transaction which pays B less
money than the last, but B could still broadcast the older transaction.

Vulnerable to malleability. The anchor transaction could be altered in sev-
eral ways (without invaliding it completely) before inclusion in the blockchain:
this alters its transaction id and thus makes the refund transaction unus-
able.

This last issue is a common one with complex bitcoin transactions, and BIP62[7]
is proposed to prevent non-signing parties from being able to malleate transac-
tions.

2.2 Generalized Payment Channels Using Revocable Trans-
actions

The Lightning network introduced generalized, bi-directional payment channels,
referred to here as Poon-Dryja channels. These use a mutual anchor, which
both create to provide the channel funding, and a symmetrical pair of updatable
commitment transactions rather than the single transaction used in the one-way
channel case.

[FIXME: Insert Figure 1 from LN draft 0.5]

To update the commitment, A sends B a signature for B’s new commitment
transaction, and B sends A a signature for A’s new commitment transaction.

As before, each commitment transaction contains two outputs, one for A
and one for B; but A’s commitment transaction output to itself is encumbered
by an additional restriction (as is B’s output to itself). Instead of paying A
directly, needs both A and B’s signature. B provides such a signature, but on
a “commitment refund” transaction which can only be spent after a delay (40
days in the paper). Thus if A closes the channel by signing and broadcasting
its commitment transaction, B can collect its output immediately, but A must
wait 40 days.

This delay encumbering the output is what makes the commitment trans-
action revocable; once an updated commitment transaction is agreed upon, the
previous commitment transaction pair is revoked by sharing the private keys
needed to redeem those encumbered outputs. Thus, A shares its (throwaway)
private key, and B shares its throwaway private key. If A were to sign and broad-
cast a revoked commitment transaction, B could not only immediately spend
its own output, but it has both A’s key and its own to generate a transaction
which can spend the output which would normally go to A after a delay.

2.3 Hashed Timelock Contracts (HTLCs)

The Lightning Network paper used a set of 4 transactions to implement a hashed
timelock contract, which guarantees payment of a given amount on presentation
of a secret value R within a certain timespan. Any number of these could be
active within a generalized channel, and this is what allows a network to form:

Node A offers node B $1 for the secret within 2 days, node B offers node C 99¢
for the secret within 1 day, etc.
[FIXME: Insert figure 2 from LN Draft 0.5 |

3 Enhancements To Lightning

This paper proposes various modifications.

3.1 Poon-Dryja Generalized Payment Channel Modifica-
tions

This paper proposes three of these.

3.1.1 Placing Timeout in Output Script

Rather than using a separate transaction to enforce the delay, BIP65[6] proposes
an OP _CHECKLOCKTIMEVERIFY which allows an output to specify the
minimum time at which it can be spent. With this enhancement, we no longer
need a separate “commitment refund” transaction. The commitment transaction
to-self output script would be a little more complex:

e A and B’s signature, OR
o A’s signature and OP CHECKLOCKTIMEVERIFY <40 days>

3.1.2 Using Relative Locktime

The Poon-Dryja channel uses a 40 day locktime, because transaction locktime
is absolute. Before 40 days the channel must be closed otherwise spending
a revoked transaction and immediately following it with the commit refund
transaction is possible.

A proposal to extend output scripts to specify a minimum relative time
before they can be spent[2] can reduce this timeout (say, to 1 day) and avoid
placing a lifetime limit on the channel, like so:

e A and B’s signature, OR
o A’s signature and OP _CHECKSEQUENCEVERIFY <1 day>

3.1.3 Using Revocation Preimages Instead of Private Keys

There’s a slightly more intuitive and more efficient method than exchanging
private keys, which is to reuse a technique of hash preimages which is already
needed for HTLCs (as we see later).

Instead of using a private keys, B uses knowledge of a hash preimage as well
as its signature to steal funds from a revoked commitment transaction. Thus,
to create a commitment transaction each side provides a hash value; to revoke
a commitment transaction it provides the prehash image.

The resulting commitment transaction to-self output now looks like:
e B’s signature and a preimage which hashes to <revocation-hash>, OR
o A’s signature and OP CHECKSEQUENCEVERIFY <1 day>

This can be expressed fairly easily in bitcoin’s script-based scripting language,
as annotated in 4. The final pair of commitment transaction outputs is shown

in Figure 1.
{ % {

SIGA&B SIGA&B
Commit Commit
Tx A Tx B
SIG IB i l SIGA
REVOCATION-A & SIG B REVOCATION-B & SIG A
OR OR
OP_CSV &SIG A OP_CSV & SIG B

Figure 1: Commitment Transaction Outputs

3.2 Channel Opening Modifications

The method of creating the first commitment transaction before signing the
anchor transaction (as proposed in the paper) presents two problems in practice:

1. The anchor transaction id required for the commitment input will only be
known one the anchor is signed, and

2. The anchor transaction can be malleated by either party before entering
the blockchain, rendering the commitment input unusable.

The last of these is particularly pernicious, as BIP62 doesn’t solve it: signa-
tories can always re-sign a transaction, hence altering its transaction ID. The
paper proposes new SIGHASH flags which mitigate this problem, but we are
attempting to avoid that.

For ease of understanding, we develop the protocol in stages. Please note
that the intermediary proposals are insecure!

3.2.1 Separate Anchor Transactions

To avoid the problem of needing all anchor signatures to derive the anchor
transaction ID to create the commitment transaction input, we split the anchor
into two transactions; thus A knows its anchor transaction ID, and B knows its
anchor transaction ID as shown in Figure 2.

b i

SIGA & SIGB SIGA|& SIGB

Y Y

SIGA&B SIGA&B
Commit Commit
Tx A Tx B

Figure 2: Simplistic Dual Anchor Design

This form allows A and B to create commitment transactions which spends
the anchors outputs by exchanging anchor transaction IDs. It has the problem
that if the other party does not then broadcast its anchor transaction, we cannot
spend the commitment transaction, and our own anchor funds are stuck.

Thus we introduce an escape transaction, which lets us regain our anchor
funds in that case, as shown in Figure 3.

ks

SIGA & SIGB SIGA & SIGB

SIGA & SIGB Y SIGA & SIGB
()-lemeoe?]

SIGA SIGB

Y Yy

SIGA&B SIGA&B
Commit Commit
TxX A Tx B

Figure 3: Dual Anchor With Simple Escape Transactions

However, this escape transaction would let either side remove its funds from
the channel at any time, which would make the channel insecure. Thus, after the
commitment transactions have been established, we want to revoke the escape
transactions. We can do the same way we did for the commitment transaction
revocation; by placing restrictions on the “to-me” output. In particular, adding
a delay if paying back to the anchor owner, and allowing it to be spent by the
other party immediately if they possess the revocation preimage, as shown in
Figure 4.

R

SIGA & SIGB SIGA & SIGB

SIGA & SIGB Y SIGA&SIGB

Escape B

Escape A

OP_CSV & SIGA OP_CSV & SIGB

RIMAGE-A & SIGB RIMAGE-B & SIGA

Y Yy

SIGA&B SIGA&B
Commit Commit
TxX A Tx B

Figure 4: Dual Anchors With Revocable Escape Transactions

Unfortunately, this revocation is not a complete solution; if B uses its escape
transaction, A can collect B’s anchor funds, but it has no way of collecting its
own! The commitment transaction cannot be used, as one of its inputs has been
spent by B’s escape transaction. A’s own escape transaction has been revoked,
so B would simply steal the funds.

Thus we need an additional construction, such that using one escape trans-
action immediately unlocks the other anchor funds for its owner. To do this, we
ensure that the escape transaction is forced to reveal a secret, which is a fairly
well-established technique[4]. The anchor transaction is modified to either re-
quire both signatures (for the commitment transaction), or both signatures and
the secret (for the escape transaction), as shown in Figure 5.

N LS

Anchor B
SIGA & SIGB
OR
SIGA & SIGB & SECRET-A SIGA & SIGB & SECRET-B
SIGA & SIGB & SECRET-A Y SIGA & SIGB & SECRET-B
%, Escape B
OP_(SV & SIGB
OR

RIMAGE-A & SIGB RIMAGE-B & SIGA

Y Yy

SIGA&B SIGA&B
Commit Commit
Tx A Tx B

Figure 5: Secret Revelation by Escape Transactions

That revealed secret can be used with the other alternative: the fast escape
transaction. This reveals the secret just like the escape transaction, but its
output is immediately usable if one knows the other side’s secret. This is shown
in Figure 6. Thus, if the B broadcasts its escape transaction after it has been
revoked, A can (after ensuring escape B is sufficiently deep in the block chain)
broadcast its fast escape transaction and use B’s secret to immediately spend
the output.

On the other hand, if B broadcasts its fast escape transaction without know-
ing A’s secret, A can simply wait for the timeout and spend the fast escape
output, then use its own fast escape transaction and B’s secret to recover its
own anchor funds as well.

N LS

Anchor B
SIGA & SIGB
OR
SIGA & SIGB & SECRET-A SIGA & SI@B & SECRET-B
SIGA & SIGB & SECRET-A Y SIGA & SIGB & SECRET-B

Escape B

OP_(SV & SIGB

RIMAGE-B & SIGA

RIMAGE-A & SIGB

SIGA & SIGB & SECRET-A SIGA & SIGB & SECRET-B

Fast Esc A Fast Esc B

OP_CSV & SIGB # ¢ Y OP_CSV & SIGA
T OR SIGA&B SIGA&B OR

SECRET-B & SIGA | Commit Commit SECRET-A & SIGB

TxX A Tx B

Figure 6: Final Dual Anchor Design
The final scripts are shown in 4.

3.2.2 Disadvantages of The Dual Anchor Approach

Unlike the mutual anchor approach, use of escape transactions is not outsourca-
ble: you cannot have an untrusted third party which can monitor the network
for the other sides’ revoked escape transaction and respond with your own es-
cape transaction. If you were to provide a third party with your fast escape
transaction, you would necessarily provide it with the secret, which it could
give to B.

3.3 Hashed Timelock Contract (HTLC) Modification

Using the same techniques used above, we can condense each HTLC into a single
output script on the commitment transaction. This output is spendable under
three conditions:

1. Recipient knows the R value (funds go to recipient), or
2. The HTLC has timed out (funds return to sender), or
3. The Commit transaction has been revoked (funds to go other side).

Unlike the original paper, we use revocation preimages instead of sharing tem-
porary private keys. If we also use OP _CHECKLOCKTIMEVERIFY and

OP_ CHECKSEQUENCEVERIFY it is fairly simple to express these condi-
tions in a single output script.

10

For each direction the HTLC could transfer funds, there are two scripts
required; one for A’s commitment transaction and one for B’s commitment
transaction. It’s also a requirement that the conditions which allow payment to
oneself be delayed, to give the other side an opportunity to take the funds in
case of revocation. This is shown in figure 7.

—O=

SIGA&B SIGA&B
Commit Commit
Tx A Tx B
SIG lEs l l SIGA
REVOCATION-A & SIG B REVOCATION-B & SIG A
OR OR
OP_CSV &SIG A OP_CSV &SIG B
R-VALUE & SIG-PAYEE R-VALUE & SIG-PAYEE
OR OR
HTLC-TIMEOUT & SIG-PAYER ~ HTLC-TIMEOUT & SIG-PAYER
OR OR
REVOCATION-A & SIG B REVOCATION-B & SIG A

Figure 7: HTLC Using Revocation Preimages, OP _CLV and OP _CSV

The scripts for this can be found in 4.

4 Conclusions

Secret preimages can replace exposure of temporary private keys in the Light-
ning Network constructs with no loss of generality, and a slight gain in simplicity.

The use of script conditionals to enforce timeouts instead of using separate
pre-signed transactions reduces an HTLC from a set of four dual-signed trans-
actions to a single (more complex) output script, and additionally avoids any
requirement for new CHECKSIG flags for HTLCs.

By using a dual anchor and escape transactions, channel establishment can
also avoid new CHECKSIG flags, though it loses the important ability to out-
source the enforcement of channel contract terms.

Acknowlegments
Thanks to Joseph Poon for designing the escape/fast-escape dual-anchor method,
as well as finding a flaw in my original formulation of the dual anchor construct

and reviewing an earlier draft of this paper. Also thanks to him and Thaddeus
Dryja for the initial eye-opening Lightning Network paper.

11

References

[1]

2]

3]
4]

5]

[6]

7]

Rapidly-adjusted (micro)payments to a pre-determined party. https://en.
bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.
29payments_to_a_pre-determined_party.

Mark Friedenbach. [bitcoin-development] [BIP draft] consensus-enforced
transaction replacement signalled via sequence numbers. http://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.
html.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Tier Nolan. Alt chains and atomic transfers. https://bitcointalk.org/
index.php7topic=193281.msg2224949#msg2224949.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning net-
work draft version 0.5, 2015. http://lightning.network/
lightning-network-paper-DRAFT-0.5.pdf.

Peter Todd. OP CHECKLOCKTIMEVERIFY. https://github.com/
bitcoin/bips/blob/master/bip-0065.mediawiki.

Pieter Wuille. Dealing with malleability. https://github.com/bitcoin/
bips/blob/master/bip-0062.mediawiki.

Appendix A: Transaction Scripts

All outputs are expressed as pay-to-scripthash outputs, where the redeeming
input provides the redeemscript. Where a redeem-hash value is optional, it is
generally supplied: for example, if we want to pay to A if a preimage is supplied
and B if no preimage is supplied, we expect the input scriptsig to provide two
arguments in both cases (generally a zero in the second case). This saves an
extra test (of form “OP_DEPTH <N> OP_EQUAL”), at cost of a single byte
in the input script.

Anchor Transaction

The anchor inputs are whatever the node chooses.

Anchor Output Redeemscript

The anchor output is a pay to script hash, with a redeemscript as follows:

OP _IF They put a non-zero here if they’re supplying the secret

OP_ HASH <SECRET-A-HASH> OP_ EQUALVERIFY Check
secret is correct.

12

https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

OP_ENDIF
2 <KEY-A> <KEY-B> 2 OP_CHECKMULTISIG Make sure A and
B have signed.

Escape Transaction

The escape transaction for A spends A’s anchor output and reveals A’s secret.
Similarly for B.

Escape Input Script
<SIG-A> <SIG-B> SECRET 1 {<ANCHOR-REDEEMSCRIPT>}

Escape Output Redeemscript

This allows two paths: one for the other side to use the revocation image, and
one for this side to get their funds back after a delay. This show’s A’s script,
but B’s is the same with A and B exchanged.

OP HASHI160 <RHASH-A> OP_ EQUAL Check if the top of stack is
the revocation image.

OP_IF
<KEY-B> Funds for B.
OP ELSE It’s A getting their funds back

<DELAYTIME> OP CHECKSEQUENCEVERIFY OP DROP
Ensure delay.

<KEY-A> Needs to be signed by A.

OP ENDIF
OP CHECKSIG Make sure it’s signed correctly.

Spending The Escape Output

Either B using a revocation preimage:

<SIG-B> <REVOCATION-IMAGE-A> {<ESCAPE-REDEEMSCRIPT>}

Or A using after a timeout:

<SIG-A> 0 {<ESCAPE-REDEEMSCRIPT >}

13

Fast-Escape Transaction
Fast-Escape Input Script
This is identical to the normal escape input script.

<SIG-A> <SIG-B> SECRET 1 {<ANCHOR-REDEEMSCRIPT >}

Fast-Escape Output Redeemscript

This allows two paths: one for this side to use the other side’s secret (revealed
by them using an escape transaction), and one for the other side to claim this
side’s anchor funds after a delay. This show’s A’s script, but B’s is the same
with A and B exchanged.

OP_ HASH <SECRET-B-HASH> OP_ EQUAL If top argument is B’s
secret

OP _IF
<KEY-A> For A
OP ELSE B gets it if A doesn’t know the secret.

<DELAYTIME> OP CHECKSEQUENCEVERIFY OP DROP
Ensure delay.

<KEY-B> Needs to be signed by B.

OP ENDIF
OP CHECKSIG Make sure it’s signed correctly.

Spending The Fast-Escape Output

Either A using a B’s secret revealed by B using its own escape transaction:

<SIG-A> <SECRET-B> {<FAST-ESCAPE-REDEEMSCRIPT >}

Or B using after a timeout:

<SIG-B> 0 {<FAST-ESCAPE-REDEEMSCRIPT >}

Commitment Transactions For Generalized Channels

These examples are for A’s Commitment Transaction; switch A and B to get
B’s commitment transaction.

14

Commitment Input Script

The commitment transaction has two inputs; one which spends each anchor
output. The two zeroes indicate it is not revealing the secret:

<SIG-A> <SIG-B> 0 0 {<ANCHOR-REDEEMSCRIPT >}

Commitment Transaction Output Redeemscripts

One output pays B’s funds to B as normal (eg. pay to scripthash “<KEY-B>
OP CHECKSIG”). The other output pays A’s funds: either to B if they supply
the revocation preimage, or to A after a delay. This is the redeemscript:

OP HASH160 <COMMIT-REVOCATION-HASH> OP EQUAL Did
they supply revocation preimage?

OP_IF
<B-KEY> To B.
OP_ELSE

<LOCKTIME> OP CHECKSEQUENCEVERIFY OP DROP
Spending transaction must be after timeout

<A-KEY> To A.

OP_ENDIF
OP_ CHECKSIG Signature must be correct.

Spending Commitment Qutput
Either B using a revocation preimage:

<SIG-B> <COMMIT-REVOCATION-IMAGE-A > {<COMMITMENT-REDEEMSCRIPT >}

Or A using after a timeout:

<SIG-A> 0 {<COMMITMENT-REDEEMSCRIPT >}

Hash Locked Transaction Commitments

There are two styles of commitment transaction outputs for HTLCs: a “sender”
and ‘“receiver” case. The output is a pay-to-script-hash, so the redeemscripts
are shown below.

These scripts show A as the sender, and B as the receiver: exchange A and
B for the reverse.

15

HTLC Sender Redeemscript
OP HASHI160 OP DUP Replace top element with two copies of its hash
<R-HASH> OP_EQUAL Test if they supplied the HTLC R value

OP_ SWAP <COMMIT-REVOCATION-HASH> OP EQUAL OP_ADD
Or the commitment revocation hash

OP _IF If any hash matched.
<KEY-B> Pay to B.
OP ELSE Must be A, after HTLC has timed out.

<HTLC-TIMEOUT> OP CHECKLOCKTIMEVERIFY OP DROP
Ensure (absolute) time has passed.

<DELAY> OP CHECKSEQUENCEVERIFY OP DROP Delay
gives B enough time to use revocation if it has it.

<KEY-A> Pay to A.
OP_ENDIF
OP CHECKSIG Verify A or B’s signature is correct.

HTLC Receiver Redeemscript
OP HASHI160 OP DUP Replace top element with two copies of its hash
<R-HASH> OP EQUAL B redeeming the contract, using R preimage?
OP_IF

OP DROP Remove extra hash

<KE}Y-A> Pay to B
OP ELSE

<COMMIT-REVOCATION-HASH> OP EQUAL If the commit
has been revoked.

OP_NOTIF If not, you need to wait for timeout.

<HTLC-TIMEOUT> OP_ CHECKLOCKTIMEVERIFY OP DROP
Ensure (absolute) time has passed.

OP ENDIF
<KEY-A> Pay to A

OP _ENDIF
OP_ CHECKSIG Verify A or B’s signature is correct.

16

Redeeming A HTLC Output

To redeem an HTLC, the recipient one provides the preimage R, and their
signature. In our example above, B can redeem the HTLC:

<SIG-B> <HTLC-R-VALUE> {<HTLC-REDEEMSCRIPT>}

Claiming a Timed-out HTLC

To claim a timed-out HTLC, the sender supplies a zero value (which is nice and
short, but fails to hash to any of the revocation hashes), and their signature. In
our example above, A can claim the timed-out HTLC:

<SIG-A> 0 {<HTLC-REDEEMSCRIPT>}

Claiming A HTLC Output For A Revoked Commitment Transaction

If either side publishes a commitment transaction which has been revoked, we
can use the revocation preimage they supplied to spend all the outputs. This
example shows A claiming the HTLC output if B broadcasts a revoked commit-
ment transaction:

<SIG-A> <COMMIT-REVOCATION > {<HTLC-REDEEMSCRIPT >}

17

	1 Introduction
	2 Previous Work
	2.1 Payment Channels
	2.1.1 Limitations Of Simple Payment Channels

	2.2 Generalized Payment Channels Using Revocable Transactions
	2.3 Hashed Timelock Contracts (HTLCs)

	3 Enhancements To Lightning
	3.1 Poon-Dryja Generalized Payment Channel Modifications
	3.1.1 Placing Timeout in Output Script
	3.1.2 Using Relative Locktime
	3.1.3 Using Revocation Preimages Instead of Private Keys

	3.2 Channel Opening Modifications
	3.2.1 Separate Anchor Transactions
	3.2.2 Disadvantages of The Dual Anchor Approach

	3.3 Hashed Timelock Contract (HTLC) Modification

	4 Conclusions

