mirror of
https://github.com/aljazceru/lightning.git
synced 2025-12-20 15:44:21 +01:00
daemon: use siphash for hashes.
Remove ccan/hash (aka Jenkins lookup3) altogether. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
6
Makefile
6
Makefile
@@ -58,8 +58,8 @@ CCAN_OBJS := \
|
||||
ccan-crypto-sha256.o \
|
||||
ccan-crypto-shachain.o \
|
||||
ccan-asort.o \
|
||||
ccan-crypto-siphash24.o \
|
||||
ccan-err.o \
|
||||
ccan-hash.o \
|
||||
ccan-htable.o \
|
||||
ccan-ilog.o \
|
||||
ccan-io-io.o \
|
||||
@@ -99,9 +99,9 @@ CCAN_HEADERS := \
|
||||
$(CCANDIR)/ccan/crypto/ripemd160/ripemd160.h \
|
||||
$(CCANDIR)/ccan/crypto/sha256/sha256.h \
|
||||
$(CCANDIR)/ccan/crypto/shachain/shachain.h \
|
||||
$(CCANDIR)/ccan/crypto/siphash24/siphash24.h \
|
||||
$(CCANDIR)/ccan/endian/endian.h \
|
||||
$(CCANDIR)/ccan/err/err.h \
|
||||
$(CCANDIR)/ccan/hash/hash.h \
|
||||
$(CCANDIR)/ccan/htable/htable.h \
|
||||
$(CCANDIR)/ccan/htable/htable_type.h \
|
||||
$(CCANDIR)/ccan/ilog/ilog.h \
|
||||
@@ -389,7 +389,7 @@ ccan-cdump.o: $(CCANDIR)/ccan/cdump/cdump.c
|
||||
$(CC) $(CFLAGS) -c -o $@ $<
|
||||
ccan-strmap.o: $(CCANDIR)/ccan/strmap/strmap.c
|
||||
$(CC) $(CFLAGS) -c -o $@ $<
|
||||
ccan-hash.o: $(CCANDIR)/ccan/hash/hash.c
|
||||
ccan-crypto-siphash24.o: $(CCANDIR)/ccan/crypto/siphash24/siphash24.c
|
||||
$(CC) $(CFLAGS) -c -o $@ $<
|
||||
ccan-htable.o: $(CCANDIR)/ccan/htable/htable.c
|
||||
$(CC) $(CFLAGS) -c -o $@ $<
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
../../licenses/CC0
|
||||
@@ -1,32 +0,0 @@
|
||||
#include "config.h"
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
/**
|
||||
* hash - routines for hashing bytes
|
||||
*
|
||||
* When creating a hash table it's important to have a hash function
|
||||
* which mixes well and is fast. This package supplies such functions.
|
||||
*
|
||||
* The hash functions come in two flavors: the normal ones and the
|
||||
* stable ones. The normal ones can vary from machine-to-machine and
|
||||
* may change if we find better or faster hash algorithms in future.
|
||||
* The stable ones will always give the same results on any computer,
|
||||
* and on any version of this package.
|
||||
*
|
||||
* License: CC0 (Public domain)
|
||||
* Maintainer: Rusty Russell <rusty@rustcorp.com.au>
|
||||
* Author: Bob Jenkins <bob_jenkins@burtleburtle.net>
|
||||
*/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
return 1;
|
||||
|
||||
if (strcmp(argv[1], "depends") == 0) {
|
||||
printf("ccan/build_assert\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
@@ -1,926 +0,0 @@
|
||||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
||||
|
||||
These are functions for producing 32-bit hashes for hash table lookup.
|
||||
hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
||||
are externally useful functions. Routines to test the hash are included
|
||||
if SELF_TEST is defined. You can use this free for any purpose. It's in
|
||||
the public domain. It has no warranty.
|
||||
|
||||
You probably want to use hashlittle(). hashlittle() and hashbig()
|
||||
hash byte arrays. hashlittle() is is faster than hashbig() on
|
||||
little-endian machines. Intel and AMD are little-endian machines.
|
||||
On second thought, you probably want hashlittle2(), which is identical to
|
||||
hashlittle() except it returns two 32-bit hashes for the price of one.
|
||||
You could implement hashbig2() if you wanted but I haven't bothered here.
|
||||
|
||||
If you want to find a hash of, say, exactly 7 integers, do
|
||||
a = i1; b = i2; c = i3;
|
||||
mix(a,b,c);
|
||||
a += i4; b += i5; c += i6;
|
||||
mix(a,b,c);
|
||||
a += i7;
|
||||
final(a,b,c);
|
||||
then use c as the hash value. If you have a variable length array of
|
||||
4-byte integers to hash, use hash_word(). If you have a byte array (like
|
||||
a character string), use hashlittle(). If you have several byte arrays, or
|
||||
a mix of things, see the comments above hashlittle().
|
||||
|
||||
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
||||
then mix those integers. This is fast (you can do a lot more thorough
|
||||
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
||||
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
//#define SELF_TEST 1
|
||||
|
||||
#if 0
|
||||
#include <stdio.h> /* defines printf for tests */
|
||||
#include <time.h> /* defines time_t for timings in the test */
|
||||
#include <stdint.h> /* defines uint32_t etc */
|
||||
#include <sys/param.h> /* attempt to define endianness */
|
||||
|
||||
#ifdef linux
|
||||
# include <endian.h> /* attempt to define endianness */
|
||||
#endif
|
||||
|
||||
/*
|
||||
* My best guess at if you are big-endian or little-endian. This may
|
||||
* need adjustment.
|
||||
*/
|
||||
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
|
||||
__BYTE_ORDER == __LITTLE_ENDIAN) || \
|
||||
(defined(i386) || defined(__i386__) || defined(__i486__) || \
|
||||
defined(__i586__) || defined(__i686__) || defined(__x86_64) || \
|
||||
defined(vax) || defined(MIPSEL))
|
||||
# define HASH_LITTLE_ENDIAN 1
|
||||
# define HASH_BIG_ENDIAN 0
|
||||
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
|
||||
__BYTE_ORDER == __BIG_ENDIAN) || \
|
||||
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
|
||||
# define HASH_LITTLE_ENDIAN 0
|
||||
# define HASH_BIG_ENDIAN 1
|
||||
#else
|
||||
# error Unknown endian
|
||||
#endif
|
||||
#endif /* old hash.c headers. */
|
||||
|
||||
#include "hash.h"
|
||||
|
||||
#if HAVE_LITTLE_ENDIAN
|
||||
#define HASH_LITTLE_ENDIAN 1
|
||||
#define HASH_BIG_ENDIAN 0
|
||||
#elif HAVE_BIG_ENDIAN
|
||||
#define HASH_LITTLE_ENDIAN 0
|
||||
#define HASH_BIG_ENDIAN 1
|
||||
#else
|
||||
#error Unknown endian
|
||||
#endif
|
||||
|
||||
#define hashsize(n) ((uint32_t)1<<(n))
|
||||
#define hashmask(n) (hashsize(n)-1)
|
||||
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
mix -- mix 3 32-bit values reversibly.
|
||||
|
||||
This is reversible, so any information in (a,b,c) before mix() is
|
||||
still in (a,b,c) after mix().
|
||||
|
||||
If four pairs of (a,b,c) inputs are run through mix(), or through
|
||||
mix() in reverse, there are at least 32 bits of the output that
|
||||
are sometimes the same for one pair and different for another pair.
|
||||
This was tested for:
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
||||
satisfy this are
|
||||
4 6 8 16 19 4
|
||||
9 15 3 18 27 15
|
||||
14 9 3 7 17 3
|
||||
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
||||
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
||||
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
||||
the operations, constants, and arrangements of the variables.
|
||||
|
||||
This does not achieve avalanche. There are input bits of (a,b,c)
|
||||
that fail to affect some output bits of (a,b,c), especially of a. The
|
||||
most thoroughly mixed value is c, but it doesn't really even achieve
|
||||
avalanche in c.
|
||||
|
||||
This allows some parallelism. Read-after-writes are good at doubling
|
||||
the number of bits affected, so the goal of mixing pulls in the opposite
|
||||
direction as the goal of parallelism. I did what I could. Rotates
|
||||
seem to cost as much as shifts on every machine I could lay my hands
|
||||
on, and rotates are much kinder to the top and bottom bits, so I used
|
||||
rotates.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define mix(a,b,c) \
|
||||
{ \
|
||||
a -= c; a ^= rot(c, 4); c += b; \
|
||||
b -= a; b ^= rot(a, 6); a += c; \
|
||||
c -= b; c ^= rot(b, 8); b += a; \
|
||||
a -= c; a ^= rot(c,16); c += b; \
|
||||
b -= a; b ^= rot(a,19); a += c; \
|
||||
c -= b; c ^= rot(b, 4); b += a; \
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
final -- final mixing of 3 32-bit values (a,b,c) into c
|
||||
|
||||
Pairs of (a,b,c) values differing in only a few bits will usually
|
||||
produce values of c that look totally different. This was tested for
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
These constants passed:
|
||||
14 11 25 16 4 14 24
|
||||
12 14 25 16 4 14 24
|
||||
and these came close:
|
||||
4 8 15 26 3 22 24
|
||||
10 8 15 26 3 22 24
|
||||
11 8 15 26 3 22 24
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define final(a,b,c) \
|
||||
{ \
|
||||
c ^= b; c -= rot(b,14); \
|
||||
a ^= c; a -= rot(c,11); \
|
||||
b ^= a; b -= rot(a,25); \
|
||||
c ^= b; c -= rot(b,16); \
|
||||
a ^= c; a -= rot(c,4); \
|
||||
b ^= a; b -= rot(a,14); \
|
||||
c ^= b; c -= rot(b,24); \
|
||||
}
|
||||
|
||||
/*
|
||||
--------------------------------------------------------------------
|
||||
This works on all machines. To be useful, it requires
|
||||
-- that the key be an array of uint32_t's, and
|
||||
-- that the length be the number of uint32_t's in the key
|
||||
|
||||
The function hash_word() is identical to hashlittle() on little-endian
|
||||
machines, and identical to hashbig() on big-endian machines,
|
||||
except that the length has to be measured in uint32_ts rather than in
|
||||
bytes. hashlittle() is more complicated than hash_word() only because
|
||||
hashlittle() has to dance around fitting the key bytes into registers.
|
||||
--------------------------------------------------------------------
|
||||
*/
|
||||
uint32_t hash_u32(
|
||||
const uint32_t *k, /* the key, an array of uint32_t values */
|
||||
size_t length, /* the length of the key, in uint32_ts */
|
||||
uint32_t initval) /* the previous hash, or an arbitrary value */
|
||||
{
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
|
||||
|
||||
/*------------------------------------------------- handle most of the key */
|
||||
while (length > 3)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 3;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*------------------------------------------- handle the last 3 uint32_t's */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 3 : c+=k[2];
|
||||
case 2 : b+=k[1];
|
||||
case 1 : a+=k[0];
|
||||
final(a,b,c);
|
||||
case 0: /* case 0: nothing left to add */
|
||||
break;
|
||||
}
|
||||
/*------------------------------------------------------ report the result */
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
hashlittle() -- hash a variable-length key into a 32-bit value
|
||||
k : the key (the unaligned variable-length array of bytes)
|
||||
length : the length of the key, counting by bytes
|
||||
val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
|
||||
Returns a 32-bit value. Every bit of the key affects every bit of
|
||||
the return value. Two keys differing by one or two bits will have
|
||||
totally different hash values. Note that the return value is better
|
||||
mixed than val2, so use that first.
|
||||
|
||||
The best hash table sizes are powers of 2. There is no need to do
|
||||
mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
||||
use a bitmask. For example, if you need only 10 bits, do
|
||||
h = (h & hashmask(10));
|
||||
In which case, the hash table should have hashsize(10) elements.
|
||||
|
||||
If you are hashing n strings (uint8_t **)k, do it like this:
|
||||
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
||||
|
||||
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
||||
code any way you wish, private, educational, or commercial. It's free.
|
||||
|
||||
Use for hash table lookup, or anything where one collision in 2^^32 is
|
||||
acceptable. Do NOT use for cryptographic purposes.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
static uint32_t hashlittle( const void *key, size_t length, uint32_t *val2 )
|
||||
{
|
||||
uint32_t a,b,c; /* internal state */
|
||||
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
|
||||
|
||||
u.ptr = key;
|
||||
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
||||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
/*
|
||||
* "k[2]&0xffffff" actually reads beyond the end of the string, but
|
||||
* then masks off the part it's not allowed to read. Because the
|
||||
* string is aligned, the masked-off tail is in the same word as the
|
||||
* rest of the string. Every machine with memory protection I've seen
|
||||
* does it on word boundaries, so is OK with this. But VALGRIND will
|
||||
* still catch it and complain. The masking trick does make the hash
|
||||
* noticably faster for short strings (like English words).
|
||||
*
|
||||
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
|
||||
*/
|
||||
#if 0
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
||||
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
||||
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
||||
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
||||
case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=k[0]&0xffffff; break;
|
||||
case 2 : a+=k[0]&0xffff; break;
|
||||
case 1 : a+=k[0]&0xff; break;
|
||||
case 0 : return c; /* zero length strings require no mixing */
|
||||
}
|
||||
|
||||
#else /* make valgrind happy */
|
||||
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
||||
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
|
||||
case 9 : c+=k8[8]; /* fall through */
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
||||
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
|
||||
case 5 : b+=k8[4]; /* fall through */
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
||||
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
|
||||
case 1 : a+=k8[0]; break;
|
||||
case 0 : return c;
|
||||
}
|
||||
|
||||
#endif /* !valgrind */
|
||||
|
||||
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
||||
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*--------------- all but last block: aligned reads and different mixing */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0] + (((uint32_t)k[1])<<16);
|
||||
b += k[2] + (((uint32_t)k[3])<<16);
|
||||
c += k[4] + (((uint32_t)k[5])<<16);
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 6;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[4]+(((uint32_t)k[5])<<16);
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
||||
case 10: c+=k[4];
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 9 : c+=k8[8]; /* fall through */
|
||||
case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
||||
case 6 : b+=k[2];
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 5 : b+=k8[4]; /* fall through */
|
||||
case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
||||
case 2 : a+=k[0];
|
||||
break;
|
||||
case 1 : a+=k8[0];
|
||||
break;
|
||||
case 0 : return c; /* zero length requires no mixing */
|
||||
}
|
||||
|
||||
} else { /* need to read the key one byte at a time */
|
||||
const uint8_t *k = (const uint8_t *)key;
|
||||
|
||||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
a += ((uint32_t)k[1])<<8;
|
||||
a += ((uint32_t)k[2])<<16;
|
||||
a += ((uint32_t)k[3])<<24;
|
||||
b += k[4];
|
||||
b += ((uint32_t)k[5])<<8;
|
||||
b += ((uint32_t)k[6])<<16;
|
||||
b += ((uint32_t)k[7])<<24;
|
||||
c += k[8];
|
||||
c += ((uint32_t)k[9])<<8;
|
||||
c += ((uint32_t)k[10])<<16;
|
||||
c += ((uint32_t)k[11])<<24;
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 12;
|
||||
}
|
||||
|
||||
/*-------------------------------- last block: affect all 32 bits of (c) */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=((uint32_t)k[11])<<24;
|
||||
case 11: c+=((uint32_t)k[10])<<16;
|
||||
case 10: c+=((uint32_t)k[9])<<8;
|
||||
case 9 : c+=k[8];
|
||||
case 8 : b+=((uint32_t)k[7])<<24;
|
||||
case 7 : b+=((uint32_t)k[6])<<16;
|
||||
case 6 : b+=((uint32_t)k[5])<<8;
|
||||
case 5 : b+=k[4];
|
||||
case 4 : a+=((uint32_t)k[3])<<24;
|
||||
case 3 : a+=((uint32_t)k[2])<<16;
|
||||
case 2 : a+=((uint32_t)k[1])<<8;
|
||||
case 1 : a+=k[0];
|
||||
break;
|
||||
case 0 : return c;
|
||||
}
|
||||
}
|
||||
|
||||
final(a,b,c);
|
||||
*val2 = b;
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
* hashbig():
|
||||
* This is the same as hash_word() on big-endian machines. It is different
|
||||
* from hashlittle() on all machines. hashbig() takes advantage of
|
||||
* big-endian byte ordering.
|
||||
*/
|
||||
static uint32_t hashbig( const void *key, size_t length, uint32_t *val2)
|
||||
{
|
||||
uint32_t a,b,c;
|
||||
union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
|
||||
|
||||
u.ptr = key;
|
||||
if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
|
||||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
/*
|
||||
* "k[2]<<8" actually reads beyond the end of the string, but
|
||||
* then shifts out the part it's not allowed to read. Because the
|
||||
* string is aligned, the illegal read is in the same word as the
|
||||
* rest of the string. Every machine with memory protection I've seen
|
||||
* does it on word boundaries, so is OK with this. But VALGRIND will
|
||||
* still catch it and complain. The masking trick does make the hash
|
||||
* noticably faster for short strings (like English words).
|
||||
*
|
||||
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
|
||||
*/
|
||||
#if 0
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
|
||||
case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
|
||||
case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
|
||||
case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
|
||||
case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=k[0]&0xffffff00; break;
|
||||
case 2 : a+=k[0]&0xffff0000; break;
|
||||
case 1 : a+=k[0]&0xff000000; break;
|
||||
case 0 : return c; /* zero length strings require no mixing */
|
||||
}
|
||||
|
||||
#else /* make valgrind happy */
|
||||
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
|
||||
case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
|
||||
case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
|
||||
case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
|
||||
case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
|
||||
case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
|
||||
case 1 : a+=((uint32_t)k8[0])<<24; break;
|
||||
case 0 : return c;
|
||||
}
|
||||
|
||||
#endif /* !VALGRIND */
|
||||
|
||||
} else { /* need to read the key one byte at a time */
|
||||
const uint8_t *k = (const uint8_t *)key;
|
||||
|
||||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += ((uint32_t)k[0])<<24;
|
||||
a += ((uint32_t)k[1])<<16;
|
||||
a += ((uint32_t)k[2])<<8;
|
||||
a += ((uint32_t)k[3]);
|
||||
b += ((uint32_t)k[4])<<24;
|
||||
b += ((uint32_t)k[5])<<16;
|
||||
b += ((uint32_t)k[6])<<8;
|
||||
b += ((uint32_t)k[7]);
|
||||
c += ((uint32_t)k[8])<<24;
|
||||
c += ((uint32_t)k[9])<<16;
|
||||
c += ((uint32_t)k[10])<<8;
|
||||
c += ((uint32_t)k[11]);
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 12;
|
||||
}
|
||||
|
||||
/*-------------------------------- last block: affect all 32 bits of (c) */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=k[11];
|
||||
case 11: c+=((uint32_t)k[10])<<8;
|
||||
case 10: c+=((uint32_t)k[9])<<16;
|
||||
case 9 : c+=((uint32_t)k[8])<<24;
|
||||
case 8 : b+=k[7];
|
||||
case 7 : b+=((uint32_t)k[6])<<8;
|
||||
case 6 : b+=((uint32_t)k[5])<<16;
|
||||
case 5 : b+=((uint32_t)k[4])<<24;
|
||||
case 4 : a+=k[3];
|
||||
case 3 : a+=((uint32_t)k[2])<<8;
|
||||
case 2 : a+=((uint32_t)k[1])<<16;
|
||||
case 1 : a+=((uint32_t)k[0])<<24;
|
||||
break;
|
||||
case 0 : return c;
|
||||
}
|
||||
}
|
||||
|
||||
final(a,b,c);
|
||||
*val2 = b;
|
||||
return c;
|
||||
}
|
||||
|
||||
/* I basically use hashlittle here, but use native endian within each
|
||||
* element. This delivers least-surprise: hash such as "int arr[] = {
|
||||
* 1, 2 }; hash_stable(arr, 2, 0);" will be the same on big and little
|
||||
* endian machines, even though a bytewise hash wouldn't be. */
|
||||
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
const uint64_t *k = key;
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)n*8) + (base >> 32) + base;
|
||||
|
||||
while (n > 3) {
|
||||
a += (uint32_t)k[0];
|
||||
b += (uint32_t)(k[0] >> 32);
|
||||
c += (uint32_t)k[1];
|
||||
mix(a,b,c);
|
||||
a += (uint32_t)(k[1] >> 32);
|
||||
b += (uint32_t)k[2];
|
||||
c += (uint32_t)(k[2] >> 32);
|
||||
mix(a,b,c);
|
||||
n -= 3;
|
||||
k += 3;
|
||||
}
|
||||
switch (n) {
|
||||
case 2:
|
||||
a += (uint32_t)k[0];
|
||||
b += (uint32_t)(k[0] >> 32);
|
||||
c += (uint32_t)k[1];
|
||||
mix(a,b,c);
|
||||
a += (uint32_t)(k[1] >> 32);
|
||||
break;
|
||||
case 1:
|
||||
a += (uint32_t)k[0];
|
||||
b += (uint32_t)(k[0] >> 32);
|
||||
break;
|
||||
case 0:
|
||||
return c;
|
||||
}
|
||||
final(a,b,c);
|
||||
return ((uint64_t)b << 32) | c;
|
||||
}
|
||||
|
||||
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
const uint32_t *k = key;
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)n*4) + (base >> 32) + base;
|
||||
|
||||
while (n > 3) {
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
|
||||
n -= 3;
|
||||
k += 3;
|
||||
}
|
||||
switch (n) {
|
||||
case 2:
|
||||
b += (uint32_t)k[1];
|
||||
case 1:
|
||||
a += (uint32_t)k[0];
|
||||
break;
|
||||
case 0:
|
||||
return c;
|
||||
}
|
||||
final(a,b,c);
|
||||
return ((uint64_t)b << 32) | c;
|
||||
}
|
||||
|
||||
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
const uint16_t *k = key;
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)n*2) + (base >> 32) + base;
|
||||
|
||||
while (n > 6) {
|
||||
a += (uint32_t)k[0] + ((uint32_t)k[1] << 16);
|
||||
b += (uint32_t)k[2] + ((uint32_t)k[3] << 16);
|
||||
c += (uint32_t)k[4] + ((uint32_t)k[5] << 16);
|
||||
mix(a,b,c);
|
||||
|
||||
n -= 6;
|
||||
k += 6;
|
||||
}
|
||||
|
||||
switch (n) {
|
||||
case 5:
|
||||
c += (uint32_t)k[4];
|
||||
case 4:
|
||||
b += ((uint32_t)k[3] << 16);
|
||||
case 3:
|
||||
b += (uint32_t)k[2];
|
||||
case 2:
|
||||
a += ((uint32_t)k[1] << 16);
|
||||
case 1:
|
||||
a += (uint32_t)k[0];
|
||||
break;
|
||||
case 0:
|
||||
return c;
|
||||
}
|
||||
final(a,b,c);
|
||||
return ((uint64_t)b << 32) | c;
|
||||
}
|
||||
|
||||
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base)
|
||||
{
|
||||
uint32_t b32 = base + (base >> 32);
|
||||
uint32_t lower = hashlittle(key, n, &b32);
|
||||
|
||||
return ((uint64_t)b32 << 32) | lower;
|
||||
}
|
||||
|
||||
uint32_t hash_any(const void *key, size_t length, uint32_t base)
|
||||
{
|
||||
if (HASH_BIG_ENDIAN)
|
||||
return hashbig(key, length, &base);
|
||||
else
|
||||
return hashlittle(key, length, &base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hash64_stable_64(key, n, base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hash64_stable_32(key, n, base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hash64_stable_16(key, n, base);
|
||||
}
|
||||
|
||||
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base)
|
||||
{
|
||||
return hashlittle(key, n, &base);
|
||||
}
|
||||
|
||||
/* Jenkins' lookup8 is a 64 bit hash, but he says it's obsolete. Use
|
||||
* the plain one and recombine into 64 bits. */
|
||||
uint64_t hash64_any(const void *key, size_t length, uint64_t base)
|
||||
{
|
||||
uint32_t b32 = base + (base >> 32);
|
||||
uint32_t lower;
|
||||
|
||||
if (HASH_BIG_ENDIAN)
|
||||
lower = hashbig(key, length, &b32);
|
||||
else
|
||||
lower = hashlittle(key, length, &b32);
|
||||
|
||||
return ((uint64_t)b32 << 32) | lower;
|
||||
}
|
||||
|
||||
#ifdef SELF_TEST
|
||||
|
||||
/* used for timings */
|
||||
void driver1()
|
||||
{
|
||||
uint8_t buf[256];
|
||||
uint32_t i;
|
||||
uint32_t h=0;
|
||||
time_t a,z;
|
||||
|
||||
time(&a);
|
||||
for (i=0; i<256; ++i) buf[i] = 'x';
|
||||
for (i=0; i<1; ++i)
|
||||
{
|
||||
h = hashlittle(&buf[0],1,h);
|
||||
}
|
||||
time(&z);
|
||||
if (z-a > 0) printf("time %d %.8x\n", z-a, h);
|
||||
}
|
||||
|
||||
/* check that every input bit changes every output bit half the time */
|
||||
#define HASHSTATE 1
|
||||
#define HASHLEN 1
|
||||
#define MAXPAIR 60
|
||||
#define MAXLEN 70
|
||||
void driver2()
|
||||
{
|
||||
uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
|
||||
uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
|
||||
uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
|
||||
uint32_t x[HASHSTATE],y[HASHSTATE];
|
||||
uint32_t hlen;
|
||||
|
||||
printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
|
||||
for (hlen=0; hlen < MAXLEN; ++hlen)
|
||||
{
|
||||
z=0;
|
||||
for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
|
||||
{
|
||||
for (j=0; j<8; ++j) /*------------------------ for each input bit, */
|
||||
{
|
||||
for (m=1; m<8; ++m) /*------------ for several possible initvals, */
|
||||
{
|
||||
for (l=0; l<HASHSTATE; ++l)
|
||||
e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
|
||||
|
||||
/*---- check that every output bit is affected by that input bit */
|
||||
for (k=0; k<MAXPAIR; k+=2)
|
||||
{
|
||||
uint32_t finished=1;
|
||||
/* keys have one bit different */
|
||||
for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
|
||||
/* have a and b be two keys differing in only one bit */
|
||||
a[i] ^= (k<<j);
|
||||
a[i] ^= (k>>(8-j));
|
||||
c[0] = hashlittle(a, hlen, m);
|
||||
b[i] ^= ((k+1)<<j);
|
||||
b[i] ^= ((k+1)>>(8-j));
|
||||
d[0] = hashlittle(b, hlen, m);
|
||||
/* check every bit is 1, 0, set, and not set at least once */
|
||||
for (l=0; l<HASHSTATE; ++l)
|
||||
{
|
||||
e[l] &= (c[l]^d[l]);
|
||||
f[l] &= ~(c[l]^d[l]);
|
||||
g[l] &= c[l];
|
||||
h[l] &= ~c[l];
|
||||
x[l] &= d[l];
|
||||
y[l] &= ~d[l];
|
||||
if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
|
||||
}
|
||||
if (finished) break;
|
||||
}
|
||||
if (k>z) z=k;
|
||||
if (k==MAXPAIR)
|
||||
{
|
||||
printf("Some bit didn't change: ");
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
|
||||
e[0],f[0],g[0],h[0],x[0],y[0]);
|
||||
printf("i %d j %d m %d len %d\n", i, j, m, hlen);
|
||||
}
|
||||
if (z==MAXPAIR) goto done;
|
||||
}
|
||||
}
|
||||
}
|
||||
done:
|
||||
if (z < MAXPAIR)
|
||||
{
|
||||
printf("Mix success %2d bytes %2d initvals ",i,m);
|
||||
printf("required %d trials\n", z/2);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
/* Check for reading beyond the end of the buffer and alignment problems */
|
||||
void driver3()
|
||||
{
|
||||
uint8_t buf[MAXLEN+20], *b;
|
||||
uint32_t len;
|
||||
uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
|
||||
uint32_t h;
|
||||
uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
|
||||
uint32_t i;
|
||||
uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
|
||||
uint32_t j;
|
||||
uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
|
||||
uint32_t ref,x,y;
|
||||
uint8_t *p;
|
||||
|
||||
printf("Endianness. These lines should all be the same (for values filled in):\n");
|
||||
printf("%.8x %.8x %.8x\n",
|
||||
hash_word((const uint32_t *)q, (sizeof(q)-1)/4, 13),
|
||||
hash_word((const uint32_t *)q, (sizeof(q)-5)/4, 13),
|
||||
hash_word((const uint32_t *)q, (sizeof(q)-9)/4, 13));
|
||||
p = q;
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
p = &qq[1];
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
p = &qqq[2];
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
p = &qqqq[3];
|
||||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
||||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
||||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
||||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
||||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
||||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
||||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
||||
printf("\n");
|
||||
|
||||
/* check that hashlittle2 and hashlittle produce the same results */
|
||||
i=47; j=0;
|
||||
hashlittle2(q, sizeof(q), &i, &j);
|
||||
if (hashlittle(q, sizeof(q), 47) != i)
|
||||
printf("hashlittle2 and hashlittle mismatch\n");
|
||||
|
||||
/* check that hash_word2 and hash_word produce the same results */
|
||||
len = 0xdeadbeef;
|
||||
i=47, j=0;
|
||||
hash_word2(&len, 1, &i, &j);
|
||||
if (hash_word(&len, 1, 47) != i)
|
||||
printf("hash_word2 and hash_word mismatch %x %x\n",
|
||||
i, hash_word(&len, 1, 47));
|
||||
|
||||
/* check hashlittle doesn't read before or after the ends of the string */
|
||||
for (h=0, b=buf+1; h<8; ++h, ++b)
|
||||
{
|
||||
for (i=0; i<MAXLEN; ++i)
|
||||
{
|
||||
len = i;
|
||||
for (j=0; j<i; ++j) *(b+j)=0;
|
||||
|
||||
/* these should all be equal */
|
||||
ref = hashlittle(b, len, (uint32_t)1);
|
||||
*(b+i)=(uint8_t)~0;
|
||||
*(b-1)=(uint8_t)~0;
|
||||
x = hashlittle(b, len, (uint32_t)1);
|
||||
y = hashlittle(b, len, (uint32_t)1);
|
||||
if ((ref != x) || (ref != y))
|
||||
{
|
||||
printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
|
||||
h, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check for problems with nulls */
|
||||
void driver4()
|
||||
{
|
||||
uint8_t buf[1];
|
||||
uint32_t h,i,state[HASHSTATE];
|
||||
|
||||
|
||||
buf[0] = ~0;
|
||||
for (i=0; i<HASHSTATE; ++i) state[i] = 1;
|
||||
printf("These should all be different\n");
|
||||
for (i=0, h=0; i<8; ++i)
|
||||
{
|
||||
h = hashlittle(buf, 0, h);
|
||||
printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
driver1(); /* test that the key is hashed: used for timings */
|
||||
driver2(); /* test that whole key is hashed thoroughly */
|
||||
driver3(); /* test that nothing but the key is hashed */
|
||||
driver4(); /* test hashing multiple buffers (all buffers are null) */
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif /* SELF_TEST */
|
||||
@@ -1,313 +0,0 @@
|
||||
/* CC0 (Public domain) - see LICENSE file for details */
|
||||
#ifndef CCAN_HASH_H
|
||||
#define CCAN_HASH_H
|
||||
#include "config.h"
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <ccan/build_assert/build_assert.h>
|
||||
|
||||
/* Stolen mostly from: lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
||||
*
|
||||
* http://burtleburtle.net/bob/c/lookup3.c
|
||||
*/
|
||||
|
||||
/**
|
||||
* hash - fast hash of an array for internal use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The memory region pointed to by p is combined with the base to form
|
||||
* a 32-bit hash.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*
|
||||
* It may also change with future versions: it could even detect at runtime
|
||||
* what the fastest hash to use is.
|
||||
*
|
||||
* See also: hash64, hash_stable.
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* // Simple demonstration: idential strings will have the same hash, but
|
||||
* // two different strings will probably not.
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* uint32_t hash1, hash2;
|
||||
*
|
||||
* if (argc != 3)
|
||||
* err(1, "Usage: %s <string1> <string2>", argv[0]);
|
||||
*
|
||||
* hash1 = hash(argv[1], strlen(argv[1]), 0);
|
||||
* hash2 = hash(argv[2], strlen(argv[2]), 0);
|
||||
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different");
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash(p, num, base) hash_any((p), (num)*sizeof(*(p)), (base))
|
||||
|
||||
/**
|
||||
* hash_stable - hash of an array for external use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The array of simple integer types pointed to by p is combined with
|
||||
* the base to form a 32-bit hash.
|
||||
*
|
||||
* This hash will have the same results on different machines, so can
|
||||
* be used for external hashes (ie. hashes sent across the network or
|
||||
* saved to disk). The results will not change in future versions of
|
||||
* this module.
|
||||
*
|
||||
* Note that it is only legal to hand an array of simple integer types
|
||||
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases,
|
||||
* the same values will have the same hash result, even though the
|
||||
* memory representations of integers depend on the machine
|
||||
* endianness.
|
||||
*
|
||||
* See also:
|
||||
* hash64_stable
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* if (argc != 2)
|
||||
* err(1, "Usage: %s <string-to-hash>", argv[0]);
|
||||
*
|
||||
* printf("Hash stable result is %u\n",
|
||||
* hash_stable(argv[1], strlen(argv[1]), 0));
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash_stable(p, num, base) \
|
||||
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \
|
||||
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \
|
||||
sizeof(*(p)) == 8 ? hash_stable_64((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 4 ? hash_stable_32((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 2 ? hash_stable_16((p), (num), (base)) \
|
||||
: hash_stable_8((p), (num), (base)))
|
||||
|
||||
/**
|
||||
* hash_u32 - fast hash an array of 32-bit values for internal use
|
||||
* @key: the array of uint32_t
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The array of uint32_t pointed to by @key is combined with the base
|
||||
* to form a 32-bit hash. This is 2-3 times faster than hash() on small
|
||||
* arrays, but the advantage vanishes over large hashes.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*/
|
||||
uint32_t hash_u32(const uint32_t *key, size_t num, uint32_t base);
|
||||
|
||||
/**
|
||||
* hash_string - very fast hash of an ascii string
|
||||
* @str: the nul-terminated string
|
||||
*
|
||||
* The string is hashed, using a hash function optimized for ASCII and
|
||||
* similar strings. It's weaker than the other hash functions.
|
||||
*
|
||||
* This hash may have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk). The results will be different from the
|
||||
* other hash functions in this module, too.
|
||||
*/
|
||||
static inline uint32_t hash_string(const char *string)
|
||||
{
|
||||
/* This is Karl Nelson <kenelson@ece.ucdavis.edu>'s X31 hash.
|
||||
* It's a little faster than the (much better) lookup3 hash(): 56ns vs
|
||||
* 84ns on my 2GHz Intel Core Duo 2 laptop for a 10 char string. */
|
||||
uint32_t ret;
|
||||
|
||||
for (ret = 0; *string; string++)
|
||||
ret = (ret << 5) - ret + *string;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* hash64 - fast 64-bit hash of an array for internal use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the 64-bit base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The memory region pointed to by p is combined with the base to form
|
||||
* a 64-bit hash.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*
|
||||
* It may also change with future versions: it could even detect at runtime
|
||||
* what the fastest hash to use is.
|
||||
*
|
||||
* See also: hash.
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* // Simple demonstration: idential strings will have the same hash, but
|
||||
* // two different strings will probably not.
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* uint64_t hash1, hash2;
|
||||
*
|
||||
* if (argc != 3)
|
||||
* err(1, "Usage: %s <string1> <string2>", argv[0]);
|
||||
*
|
||||
* hash1 = hash64(argv[1], strlen(argv[1]), 0);
|
||||
* hash2 = hash64(argv[2], strlen(argv[2]), 0);
|
||||
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different");
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash64(p, num, base) hash64_any((p), (num)*sizeof(*(p)), (base))
|
||||
|
||||
/**
|
||||
* hash64_stable - 64 bit hash of an array for external use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The array of simple integer types pointed to by p is combined with
|
||||
* the base to form a 64-bit hash.
|
||||
*
|
||||
* This hash will have the same results on different machines, so can
|
||||
* be used for external hashes (ie. hashes sent across the network or
|
||||
* saved to disk). The results will not change in future versions of
|
||||
* this module.
|
||||
*
|
||||
* Note that it is only legal to hand an array of simple integer types
|
||||
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases,
|
||||
* the same values will have the same hash result, even though the
|
||||
* memory representations of integers depend on the machine
|
||||
* endianness.
|
||||
*
|
||||
* See also:
|
||||
* hash_stable
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
* #include <err.h>
|
||||
* #include <stdio.h>
|
||||
* #include <string.h>
|
||||
*
|
||||
* int main(int argc, char *argv[])
|
||||
* {
|
||||
* if (argc != 2)
|
||||
* err(1, "Usage: %s <string-to-hash>", argv[0]);
|
||||
*
|
||||
* printf("Hash stable result is %llu\n",
|
||||
* (long long)hash64_stable(argv[1], strlen(argv[1]), 0));
|
||||
* return 0;
|
||||
* }
|
||||
*/
|
||||
#define hash64_stable(p, num, base) \
|
||||
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \
|
||||
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \
|
||||
sizeof(*(p)) == 8 ? hash64_stable_64((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 4 ? hash64_stable_32((p), (num), (base)) \
|
||||
: sizeof(*(p)) == 2 ? hash64_stable_16((p), (num), (base)) \
|
||||
: hash64_stable_8((p), (num), (base)))
|
||||
|
||||
|
||||
/**
|
||||
* hashl - fast 32/64-bit hash of an array for internal use
|
||||
* @p: the array or pointer to first element
|
||||
* @num: the number of elements to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* This is either hash() or hash64(), on 32/64 bit long machines.
|
||||
*/
|
||||
#define hashl(p, num, base) \
|
||||
(BUILD_ASSERT_OR_ZERO(sizeof(long) == sizeof(uint32_t) \
|
||||
|| sizeof(long) == sizeof(uint64_t)) + \
|
||||
(sizeof(long) == sizeof(uint64_t) \
|
||||
? hash64((p), (num), (base)) : hash((p), (num), (base))))
|
||||
|
||||
/* Our underlying operations. */
|
||||
uint32_t hash_any(const void *key, size_t length, uint32_t base);
|
||||
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base);
|
||||
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base);
|
||||
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base);
|
||||
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base);
|
||||
uint64_t hash64_any(const void *key, size_t length, uint64_t base);
|
||||
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base);
|
||||
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base);
|
||||
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base);
|
||||
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base);
|
||||
|
||||
/**
|
||||
* hash_pointer - hash a pointer for internal use
|
||||
* @p: the pointer value to hash
|
||||
* @base: the base number to roll into the hash (usually 0)
|
||||
*
|
||||
* The pointer p (not what p points to!) is combined with the base to form
|
||||
* a 32-bit hash.
|
||||
*
|
||||
* This hash will have different results on different machines, so is
|
||||
* only useful for internal hashes (ie. not hashes sent across the
|
||||
* network or saved to disk).
|
||||
*
|
||||
* Example:
|
||||
* #include <ccan/hash/hash.h>
|
||||
*
|
||||
* // Code to keep track of memory regions.
|
||||
* struct region {
|
||||
* struct region *chain;
|
||||
* void *start;
|
||||
* unsigned int size;
|
||||
* };
|
||||
* // We keep a simple hash table.
|
||||
* static struct region *region_hash[128];
|
||||
*
|
||||
* static void add_region(struct region *r)
|
||||
* {
|
||||
* unsigned int h = hash_pointer(r->start, 0);
|
||||
*
|
||||
* r->chain = region_hash[h];
|
||||
* region_hash[h] = r->chain;
|
||||
* }
|
||||
*
|
||||
* static struct region *find_region(const void *start)
|
||||
* {
|
||||
* struct region *r;
|
||||
*
|
||||
* for (r = region_hash[hash_pointer(start, 0)]; r; r = r->chain)
|
||||
* if (r->start == start)
|
||||
* return r;
|
||||
* return NULL;
|
||||
* }
|
||||
*/
|
||||
static inline uint32_t hash_pointer(const void *p, uint32_t base)
|
||||
{
|
||||
if (sizeof(p) % sizeof(uint32_t) == 0) {
|
||||
/* This convoluted union is the right way of aliasing. */
|
||||
union {
|
||||
uint32_t a[sizeof(p) / sizeof(uint32_t)];
|
||||
const void *p;
|
||||
} u;
|
||||
u.p = p;
|
||||
return hash_u32(u.a, sizeof(p) / sizeof(uint32_t), base);
|
||||
} else
|
||||
return hash(&p, 1, base);
|
||||
}
|
||||
#endif /* HASH_H */
|
||||
@@ -1,300 +0,0 @@
|
||||
#include <ccan/hash/hash.h>
|
||||
#include <ccan/tap/tap.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
#define ARRAY_WORDS 5
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
unsigned int i;
|
||||
uint8_t u8array[ARRAY_WORDS];
|
||||
uint16_t u16array[ARRAY_WORDS];
|
||||
uint32_t u32array[ARRAY_WORDS];
|
||||
uint64_t u64array[ARRAY_WORDS];
|
||||
|
||||
/* Initialize arrays. */
|
||||
for (i = 0; i < ARRAY_WORDS; i++) {
|
||||
u8array[i] = i;
|
||||
u16array[i] = i;
|
||||
u32array[i] = i;
|
||||
u64array[i] = i;
|
||||
}
|
||||
|
||||
plan_tests(264);
|
||||
|
||||
/* hash_stable is API-guaranteed. */
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 0) == 0x1d4833cc);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 1) == 0x37125e2 );
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 2) == 0x330a007a);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 4) == 0x7b0df29b);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 8) == 0xe7e5d741);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 16) == 0xaae57471);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 32) == 0xc55399e5);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 64) == 0x67f21f7 );
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 128) == 0x1d795b71);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 256) == 0xeb961671);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 512) == 0xc2597247);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 1024) == 0x3f5c4d75);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 2048) == 0xe65cf4f9);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 4096) == 0xf2cd06cb);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 8192) == 0x443041e1);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 16384) == 0xdfc618f5);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 32768) == 0x5e3d5b97);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 65536) == 0xd5f64730);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 131072) == 0x372bbecc);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 262144) == 0x7c194c8d);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 524288) == 0x16cbb416);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 1048576) == 0x53e99222);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 2097152) == 0x6394554a);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 4194304) == 0xd83a506d);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 8388608) == 0x7619d9a4);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 16777216) == 0xfe98e5f6);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 33554432) == 0x6c262927);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 67108864) == 0x3f0106fd);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 134217728) == 0xc91e3a28);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 268435456) == 0x14229579);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 536870912) == 0x9dbefa76);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 1073741824) == 0xb05c0c78);
|
||||
ok1(hash_stable(u8array, ARRAY_WORDS, 2147483648U) == 0x88f24d81);
|
||||
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 0) == 0xecb5f507);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 1) == 0xadd666e6);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 2) == 0xea0f214c);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 4) == 0xae4051ba);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 8) == 0x6ed28026);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 16) == 0xa3917a19);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 32) == 0xf370f32b);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 64) == 0x807af460);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 128) == 0xb4c8cd83);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 256) == 0xa10cb5b0);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 512) == 0x8b7d7387);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 1024) == 0x9e49d1c );
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 2048) == 0x288830d1);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 4096) == 0xbe078a43);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 8192) == 0xa16d5d88);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 16384) == 0x46839fcd);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 32768) == 0x9db9bd4f);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 65536) == 0xedff58f8);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 131072) == 0x95ecef18);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 262144) == 0x23c31b7d);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 524288) == 0x1d85c7d0);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 1048576) == 0x25218842);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 2097152) == 0x711d985c);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 4194304) == 0x85470eca);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 8388608) == 0x99ed4ceb);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 16777216) == 0x67b3710c);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 33554432) == 0x77f1ab35);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 67108864) == 0x81f688aa);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 134217728) == 0x27b56ca5);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 268435456) == 0xf21ba203);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 536870912) == 0xd48d1d1 );
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 1073741824) == 0xa542b62d);
|
||||
ok1(hash_stable(u16array, ARRAY_WORDS, 2147483648U) == 0xa04c7058);
|
||||
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 0) == 0x13305f8c);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 1) == 0x171abf74);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 2) == 0x7646fcc7);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 4) == 0xa758ed5);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 8) == 0x2dedc2e4);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 16) == 0x28e2076b);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 32) == 0xb73091c5);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 64) == 0x87daf5db);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 128) == 0xa16dfe20);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 256) == 0x300c63c3);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 512) == 0x255c91fc);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 1024) == 0x6357b26);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 2048) == 0x4bc5f339);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 4096) == 0x1301617c);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 8192) == 0x506792c9);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 16384) == 0xcd596705);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 32768) == 0xa8713cac);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 65536) == 0x94d9794);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 131072) == 0xac753e8);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 262144) == 0xcd8bdd20);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 524288) == 0xd44faf80);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 1048576) == 0x2547ccbe);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 2097152) == 0xbab06dbc);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 4194304) == 0xaac0e882);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 8388608) == 0x443f48d0);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 16777216) == 0xdff49fcc);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 33554432) == 0x9ce0fd65);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 67108864) == 0x9ddb1def);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 134217728) == 0x86096f25);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 268435456) == 0xe713b7b5);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 536870912) == 0x5baeffc5);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 1073741824) == 0xde874f52);
|
||||
ok1(hash_stable(u32array, ARRAY_WORDS, 2147483648U) == 0xeca13b4e);
|
||||
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 0) == 0x12ef6302);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 1) == 0xe9aeb406);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 2) == 0xc4218ceb);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 4) == 0xb3d11412);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 8) == 0xdafbd654);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 16) == 0x9c336cba);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 32) == 0x65059721);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 64) == 0x95b5bbe6);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 128) == 0xe7596b84);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 256) == 0x503622a2);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 512) == 0xecdcc5ca);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 1024) == 0xc40d0513);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 2048) == 0xaab25e4d);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 4096) == 0xcc353fb9);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 8192) == 0x18e2319f);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 16384) == 0xfddaae8d);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 32768) == 0xef7976f2);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 65536) == 0x86359fc9);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 131072) == 0x8b5af385);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 262144) == 0x80d4ee31);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 524288) == 0x42f5f85b);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 1048576) == 0x9a6920e1);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 2097152) == 0x7b7c9850);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 4194304) == 0x69573e09);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 8388608) == 0xc942bc0e);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 16777216) == 0x7a89f0f1);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 33554432) == 0x2dd641ca);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 67108864) == 0x89bbd391);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 134217728) == 0xbcf88e31);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 268435456) == 0xfa7a3460);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 536870912) == 0x49a37be0);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 1073741824) == 0x1b346394);
|
||||
ok1(hash_stable(u64array, ARRAY_WORDS, 2147483648U) == 0x6c3a1592);
|
||||
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 0) == 16887282882572727244ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1) == 12032777473133454818ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2) == 18183407363221487738ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 4) == 17860764172704150171ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 8) == 18076051600675559233ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 16) == 9909361918431556721ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 32) == 12937969888744675813ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 64) == 5245669057381736951ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 128) == 4376874646406519665ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 256) == 14219974419871569521ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 512) == 2263415354134458951ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1024) == 4953859694526221685ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2048) == 3432228642067641593ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 4096) == 1219647244417697483ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 8192) == 7629939424585859553ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 16384) == 10041660531376789749ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 32768) == 13859885793922603927ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 65536) == 15069060338344675120ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 131072) == 818163430835601100ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 262144) == 14914314323019517069ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 524288) == 17518437749769352214ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1048576) == 14920048004901212706ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2097152) == 8758567366332536138ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 4194304) == 6226655736088907885ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 8388608) == 13716650013685832100ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 16777216) == 305325651636315638ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 33554432) == 16784147606583781671ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 67108864) == 16509467555140798205ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 134217728) == 8717281234694060584ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 268435456) == 8098476701725660537ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 536870912) == 16345871539461094006ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1073741824) == 3755557000429964408ULL);
|
||||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2147483648U) == 15017348801959710081ULL);
|
||||
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 0) == 1038028831307724039ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1) == 10155473272642627302ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2) == 5714751190106841420ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 4) == 3923885607767527866ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 8) == 3931017318293995558ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 16) == 1469696588339313177ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 32) == 11522218526952715051ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 64) == 6953517591561958496ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 128) == 7406689491740052867ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 256) == 10101844489704093104ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 512) == 12511348870707245959ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1024) == 1614019938016861468ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2048) == 5294796182374592721ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 4096) == 16089570706643716675ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 8192) == 1689302638424579464ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 16384) == 1446340172370386893ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 32768) == 16535503506744393039ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 65536) == 3496794142527150328ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 131072) == 6568245367474548504ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 262144) == 9487676460765485949ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 524288) == 4519762130966530000ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1048576) == 15623412069215340610ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2097152) == 544013388676438108ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 4194304) == 5594904760290840266ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 8388608) == 18098755780041592043ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 16777216) == 6389168672387330316ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 33554432) == 896986127732419381ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 67108864) == 13232626471143901354ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 134217728) == 53378562890493093ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 268435456) == 10072361400297824771ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 536870912) == 14511948118285144529ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1073741824) == 6981033484844447277ULL);
|
||||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2147483648U) == 5619339091684126808ULL);
|
||||
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 0) == 3037571077312110476ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1) == 14732398743825071988ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2) == 14949132158206672071ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 4) == 1291370080511561429ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 8) == 10792665964172133092ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 16) == 14250138032054339435ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 32) == 17136741522078732741ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 64) == 3260193403318236635ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 128) == 10526616652205653536ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 256) == 9019690373358576579ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 512) == 6997491436599677436ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1024) == 18302783371416533798ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2048) == 10149320644446516025ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 4096) == 7073759949410623868ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 8192) == 17442399482223760073ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 16384) == 2983906194216281861ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 32768) == 4975845419129060524ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 65536) == 594019910205413268ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 131072) == 11903010186073691112ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 262144) == 7339636527154847008ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 524288) == 15243305400579108736ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1048576) == 16737926245392043198ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2097152) == 15725083267699862972ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 4194304) == 12527834265678833794ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 8388608) == 13908436455987824848ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 16777216) == 9672773345173872588ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 33554432) == 2305314279896710501ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 67108864) == 1866733780381408751ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 134217728) == 11906263969465724709ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 268435456) == 5501594918093830069ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 536870912) == 15823785789276225477ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1073741824) == 17353000723889475410ULL);
|
||||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2147483648U) == 7494736910655503182ULL);
|
||||
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 0) == 9765419389786481410ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1) == 11182806172127114246ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2) == 2559155171395472619ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 4) == 3311692033324815378ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 8) == 1297175419505333844ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 16) == 617896928653569210ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 32) == 1517398559958603553ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 64) == 4504821917445110758ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 128) == 1971743331114904452ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 256) == 6177667912354374306ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 512) == 15570521289777792458ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1024) == 9204559632415917331ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2048) == 9008982669760028237ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 4096) == 14803537660281700281ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 8192) == 2873966517448487327ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 16384) == 5859277625928363661ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 32768) == 15520461285618185970ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 65536) == 16746489793331175369ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 131072) == 514952025484227461ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 262144) == 10867212269810675249ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 524288) == 9822204377278314587ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1048576) == 3295088921987850465ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2097152) == 7559197431498053712ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 4194304) == 1667267269116771849ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 8388608) == 2916804068951374862ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 16777216) == 14422558383125688561ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 33554432) == 10083112683694342602ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 67108864) == 7222777647078298513ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 134217728) == 18424513674048212529ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 268435456) == 14913668581101810784ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 536870912) == 14377721174297902048ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1073741824) == 6031715005667500948ULL);
|
||||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2147483648U) == 4827100319722378642ULL);
|
||||
|
||||
return exit_status();
|
||||
}
|
||||
@@ -1,149 +0,0 @@
|
||||
#include <ccan/hash/hash.h>
|
||||
#include <ccan/tap/tap.h>
|
||||
#include <ccan/hash/hash.c>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
#define ARRAY_WORDS 5
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
unsigned int i, j, k;
|
||||
uint32_t array[ARRAY_WORDS], val;
|
||||
char array2[sizeof(array) + sizeof(uint32_t)];
|
||||
uint32_t results[256];
|
||||
|
||||
/* Initialize array. */
|
||||
for (i = 0; i < ARRAY_WORDS; i++)
|
||||
array[i] = i;
|
||||
|
||||
plan_tests(39);
|
||||
/* Hash should be the same, indep of memory alignment. */
|
||||
val = hash(array, ARRAY_WORDS, 0);
|
||||
for (i = 0; i < sizeof(uint32_t); i++) {
|
||||
memcpy(array2 + i, array, sizeof(array));
|
||||
ok(hash(array2 + i, ARRAY_WORDS, 0) != val,
|
||||
"hash matched at offset %i", i);
|
||||
}
|
||||
|
||||
/* Hash of random values should have random distribution:
|
||||
* check one byte at a time. */
|
||||
for (i = 0; i < sizeof(uint32_t); i++) {
|
||||
unsigned int lowest = -1U, highest = 0;
|
||||
|
||||
memset(results, 0, sizeof(results));
|
||||
|
||||
for (j = 0; j < 256000; j++) {
|
||||
for (k = 0; k < ARRAY_WORDS; k++)
|
||||
array[k] = random();
|
||||
results[(hash(array, ARRAY_WORDS, 0) >> i*8)&0xFF]++;
|
||||
}
|
||||
|
||||
for (j = 0; j < 256; j++) {
|
||||
if (results[j] < lowest)
|
||||
lowest = results[j];
|
||||
if (results[j] > highest)
|
||||
highest = results[j];
|
||||
}
|
||||
/* Expect within 20% */
|
||||
ok(lowest > 800, "Byte %i lowest %i", i, lowest);
|
||||
ok(highest < 1200, "Byte %i highest %i", i, highest);
|
||||
diag("Byte %i, range %u-%u", i, lowest, highest);
|
||||
}
|
||||
|
||||
/* Hash of random values should have random distribution:
|
||||
* check one byte at a time. */
|
||||
for (i = 0; i < sizeof(uint64_t); i++) {
|
||||
unsigned int lowest = -1U, highest = 0;
|
||||
|
||||
memset(results, 0, sizeof(results));
|
||||
|
||||
for (j = 0; j < 256000; j++) {
|
||||
for (k = 0; k < ARRAY_WORDS; k++)
|
||||
array[k] = random();
|
||||
results[(hash64(array, sizeof(array)/sizeof(uint64_t),
|
||||
0) >> i*8)&0xFF]++;
|
||||
}
|
||||
|
||||
for (j = 0; j < 256; j++) {
|
||||
if (results[j] < lowest)
|
||||
lowest = results[j];
|
||||
if (results[j] > highest)
|
||||
highest = results[j];
|
||||
}
|
||||
/* Expect within 20% */
|
||||
ok(lowest > 800, "Byte %i lowest %i", i, lowest);
|
||||
ok(highest < 1200, "Byte %i highest %i", i, highest);
|
||||
diag("Byte %i, range %u-%u", i, lowest, highest);
|
||||
}
|
||||
|
||||
/* Hash of pointer values should also have random distribution. */
|
||||
for (i = 0; i < sizeof(uint32_t); i++) {
|
||||
unsigned int lowest = -1U, highest = 0;
|
||||
char *p = malloc(256000);
|
||||
|
||||
memset(results, 0, sizeof(results));
|
||||
|
||||
for (j = 0; j < 256000; j++)
|
||||
results[(hash_pointer(p + j, 0) >> i*8)&0xFF]++;
|
||||
free(p);
|
||||
|
||||
for (j = 0; j < 256; j++) {
|
||||
if (results[j] < lowest)
|
||||
lowest = results[j];
|
||||
if (results[j] > highest)
|
||||
highest = results[j];
|
||||
}
|
||||
/* Expect within 20% */
|
||||
ok(lowest > 800, "hash_pointer byte %i lowest %i", i, lowest);
|
||||
ok(highest < 1200, "hash_pointer byte %i highest %i",
|
||||
i, highest);
|
||||
diag("hash_pointer byte %i, range %u-%u", i, lowest, highest);
|
||||
}
|
||||
|
||||
if (sizeof(long) == sizeof(uint32_t))
|
||||
ok1(hashl(array, ARRAY_WORDS, 0)
|
||||
== hash(array, ARRAY_WORDS, 0));
|
||||
else
|
||||
ok1(hashl(array, ARRAY_WORDS, 0)
|
||||
== hash64(array, ARRAY_WORDS, 0));
|
||||
|
||||
/* String hash: weak, so only test bottom byte */
|
||||
for (i = 0; i < 1; i++) {
|
||||
unsigned int num = 0, cursor, lowest = -1U, highest = 0;
|
||||
char p[5];
|
||||
|
||||
memset(results, 0, sizeof(results));
|
||||
|
||||
memset(p, 'A', sizeof(p));
|
||||
p[sizeof(p)-1] = '\0';
|
||||
|
||||
for (;;) {
|
||||
for (cursor = 0; cursor < sizeof(p)-1; cursor++) {
|
||||
p[cursor]++;
|
||||
if (p[cursor] <= 'z')
|
||||
break;
|
||||
p[cursor] = 'A';
|
||||
}
|
||||
if (cursor == sizeof(p)-1)
|
||||
break;
|
||||
|
||||
results[(hash_string(p) >> i*8)&0xFF]++;
|
||||
num++;
|
||||
}
|
||||
|
||||
for (j = 0; j < 256; j++) {
|
||||
if (results[j] < lowest)
|
||||
lowest = results[j];
|
||||
if (results[j] > highest)
|
||||
highest = results[j];
|
||||
}
|
||||
/* Expect within 20% */
|
||||
ok(lowest > 35000, "hash_pointer byte %i lowest %i", i, lowest);
|
||||
ok(highest < 53000, "hash_pointer byte %i highest %i",
|
||||
i, highest);
|
||||
diag("hash_pointer byte %i, range %u-%u", i, lowest, highest);
|
||||
}
|
||||
|
||||
return exit_status();
|
||||
}
|
||||
@@ -1,28 +1,42 @@
|
||||
#include "pseudorand.h"
|
||||
#include <assert.h>
|
||||
#include <ccan/crypto/siphash24/siphash24.h>
|
||||
#include <ccan/err/err.h>
|
||||
#include <ccan/isaac/isaac64.h>
|
||||
#include <ccan/likely/likely.h>
|
||||
#include <openssl/err.h>
|
||||
#include <openssl/rand.h>
|
||||
#include <sodium/randombytes.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
static struct isaac64_ctx isaac64;
|
||||
static struct siphash_seed siphashseed;
|
||||
static bool pseudorand_initted = false;
|
||||
|
||||
uint64_t pseudorand(uint64_t max)
|
||||
static void init_if_needed(void)
|
||||
{
|
||||
if (unlikely(!pseudorand_initted)) {
|
||||
unsigned char seedbuf[16];
|
||||
|
||||
/* PRNG */
|
||||
if (RAND_bytes(seedbuf, sizeof(seedbuf)) != 1)
|
||||
errx(1, "Could not seed PRNG: %s",
|
||||
ERR_error_string(ERR_get_error(), NULL));
|
||||
randombytes_buf(seedbuf, sizeof(seedbuf));
|
||||
|
||||
isaac64_init(&isaac64, seedbuf, sizeof(seedbuf));
|
||||
memcpy(&siphashseed, seedbuf, sizeof(siphashseed));
|
||||
pseudorand_initted = true;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t pseudorand(uint64_t max)
|
||||
{
|
||||
init_if_needed();
|
||||
|
||||
assert(max);
|
||||
return isaac64_next_uint(&isaac64, max);
|
||||
}
|
||||
|
||||
const struct siphash_seed *siphash_seed(void)
|
||||
{
|
||||
init_if_needed();
|
||||
|
||||
return &siphashseed;
|
||||
}
|
||||
|
||||
|
||||
@@ -7,4 +7,10 @@
|
||||
* pseudorand - pseudo (guessable!) random number between 0 and max-1.
|
||||
*/
|
||||
uint64_t pseudorand(uint64_t max);
|
||||
|
||||
/**
|
||||
* Get the siphash seed for hash tables.
|
||||
*/
|
||||
const struct siphash_seed *siphash_seed(void);
|
||||
|
||||
#endif /* LIGHTNING_DAEMON_PSEUDORAND_H */
|
||||
|
||||
@@ -33,9 +33,10 @@
|
||||
#include "lightningd.h"
|
||||
#include "log.h"
|
||||
#include "peer.h"
|
||||
#include "pseudorand.h"
|
||||
#include "timeout.h"
|
||||
#include "watch.h"
|
||||
#include <ccan/hash/hash.h>
|
||||
#include <ccan/crypto/siphash24/siphash24.h>
|
||||
#include <ccan/ptrint/ptrint.h>
|
||||
#include <ccan/structeq/structeq.h>
|
||||
|
||||
@@ -46,7 +47,11 @@ const struct txwatch_output *txowatch_keyof(const struct txowatch *w)
|
||||
|
||||
size_t txo_hash(const struct txwatch_output *out)
|
||||
{
|
||||
return hash(&out->txid, 1, out->index);
|
||||
/* This hash-in-one-go trick only works if they're consecutive. */
|
||||
BUILD_ASSERT(offsetof(struct txwatch_output, index)
|
||||
== sizeof(((struct txwatch_output *)NULL)->txid));
|
||||
return siphash24(siphash_seed(), &out->txid,
|
||||
sizeof(out->txid) + sizeof(out->index));
|
||||
}
|
||||
|
||||
bool txowatch_eq(const struct txowatch *w, const struct txwatch_output *out)
|
||||
@@ -67,7 +72,7 @@ const struct sha256_double *txwatch_keyof(const struct txwatch *w)
|
||||
|
||||
size_t txid_hash(const struct sha256_double *txid)
|
||||
{
|
||||
return hash(txid->sha.u.u8, sizeof(txid->sha.u.u8), 0);
|
||||
return siphash24(siphash_seed(), txid->sha.u.u8, sizeof(txid->sha.u.u8));
|
||||
}
|
||||
|
||||
bool txwatch_eq(const struct txwatch *w, const struct sha256_double *txid)
|
||||
|
||||
Reference in New Issue
Block a user