Files
kata-containers/tests/metrics/report/report_dockerfile/network-cpu.R
Gabriela Cervantes fce2487971 metrics: Add metrics report R files
This PR adds the metrics report R files.

Signed-off-by: Gabriela Cervantes <gabriela.cervantes.tellez@intel.com>
2023-08-29 16:45:22 +00:00

133 lines
3.7 KiB
R

#!/usr/bin/env Rscript
# Copyright (c) 2018-2023 Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0
# Analyse the runtime component memory footprint data.
library(ggplot2) # ability to plot nicely.
# So we can plot multiple graphs
library(gridExtra) # together.
suppressMessages(suppressWarnings(library(ggpubr))) # for ggtexttable.
suppressMessages(library(jsonlite)) # to load the data.
testnames=c(
"cpu-information"
)
resultsfilesshort=c(
"CPU"
)
data=c()
rstats=c()
rstats_rows=c()
rstats_cols=c()
Gdenom = (1000.0 * 1000.0 * 1000.0)
# For each set of results
for (currentdir in resultdirs) {
dirstats=c()
# For the two different types of memory footprint measures
for (testname in testnames) {
# R seems not to like double path slashes '//' ?
fname=paste(inputdir, currentdir, testname, '.json', sep="")
if ( !file.exists(fname)) {
warning(paste("Skipping non-existent file: ", fname))
next
}
# Derive the name from the test result dirname
datasetname=basename(currentdir)
datasetvariant=resultsfilesshort[count]
# Import the data
fdata=fromJSON(fname)
fdata=fdata[[testname]]
# Copy the average result into a shorter, more accesible name
fdata$ips=fdata$Results$"instructions per cycle"$Result
fdata$Gcycles=fdata$Results$cycles$Result / Gdenom
fdata$Ginstructions=fdata$Results$instructions$Result / Gdenom
fdata$variant=rep(datasetvariant, length(fdata$Result) )
fdata$Runtime=rep(datasetname, length(fdata$Result) )
# Store away the bits we need
data=rbind(data, data.frame(
Result=fdata$ips,
Type="ips",
Runtime=fdata$Runtime,
variant=fdata$variant ) )
data=rbind(data, data.frame(
Result=fdata$Gcycles,
Type="Gcycles",
Runtime=fdata$Runtime,
variant=fdata$variant ) )
data=rbind(data, data.frame(
Result=fdata$Ginstructions,
Type="Ginstr",
Runtime=fdata$Runtime,
variant=fdata$variant ) )
# Store away some stats for the text table
dirstats=rbind(dirstats, round(fdata$ips, digits=2) )
dirstats=rbind(dirstats, round(fdata$Gcycles, digits=2) )
dirstats=rbind(dirstats, round(fdata$Ginstructions, digits=2) )
}
rstats=cbind(rstats, dirstats)
rstats_cols=append(rstats_cols, datasetname)
}
rstats_rows=c("IPS", "GCycles", "GInstr")
unts=c("Ins/Cyc", "G", "G")
rstats=cbind(rstats, unts)
rstats_cols=append(rstats_cols, "Units")
# If we have only 2 sets of results, then we can do some more
# stats math for the text table
if (length(resultdirs) == 2) {
# This is a touch hard wired - but we *know* we only have two
# datasets...
diff=c()
for (n in 1:3) {
difference = (as.double(rstats[n,2]) - as.double(rstats[n,1]))
val = 100 * (difference/as.double(rstats[n,1]))
diff=rbind(diff, round(val, digits=2))
}
rstats=cbind(rstats, diff)
rstats_cols=append(rstats_cols, "Diff %")
}
# Build us a text table of numerical results
stats_plot = suppressWarnings(ggtexttable(data.frame(rstats),
theme=ttheme(base_size=10),
rows=rstats_rows, cols=rstats_cols
))
# plot how samples varioed over 'time'
ipsdata <- subset(data, Type %in% c("ips"))
ips_plot <- ggplot() +
geom_bar(data=ipsdata, aes(Type, Result, fill=Runtime), stat="identity", position="dodge") +
xlab("Measure") +
ylab("IPS") +
ggtitle("Instructions Per Cycle") +
ylim(0, NA) +
theme(axis.text.x=element_text(angle=90))
cycdata <- subset(data, Type %in% c("Gcycles", "Ginstr"))
cycles_plot <- ggplot() +
geom_bar(data=cycdata, aes(Type, Result, fill=Runtime), stat="identity", position="dodge", show.legend=FALSE) +
xlab("Measure") +
ylab("Count (G)") +
ggtitle("Cycles and Instructions") +
ylim(0, NA) +
theme(axis.text.x=element_text(angle=90))
master_plot = grid.arrange(
ips_plot,
cycles_plot,
stats_plot,
nrow=2,
ncol=2 )