mirror of
https://github.com/aljazceru/kata-containers.git
synced 2025-12-17 06:14:26 +01:00
This PR adds the metrics report R files. Signed-off-by: Gabriela Cervantes <gabriela.cervantes.tellez@intel.com>
133 lines
3.7 KiB
R
133 lines
3.7 KiB
R
#!/usr/bin/env Rscript
|
|
# Copyright (c) 2018-2023 Intel Corporation
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Analyse the runtime component memory footprint data.
|
|
|
|
library(ggplot2) # ability to plot nicely.
|
|
# So we can plot multiple graphs
|
|
library(gridExtra) # together.
|
|
suppressMessages(suppressWarnings(library(ggpubr))) # for ggtexttable.
|
|
suppressMessages(library(jsonlite)) # to load the data.
|
|
|
|
testnames=c(
|
|
"cpu-information"
|
|
)
|
|
|
|
resultsfilesshort=c(
|
|
"CPU"
|
|
)
|
|
|
|
data=c()
|
|
rstats=c()
|
|
rstats_rows=c()
|
|
rstats_cols=c()
|
|
|
|
Gdenom = (1000.0 * 1000.0 * 1000.0)
|
|
|
|
# For each set of results
|
|
for (currentdir in resultdirs) {
|
|
dirstats=c()
|
|
# For the two different types of memory footprint measures
|
|
for (testname in testnames) {
|
|
# R seems not to like double path slashes '//' ?
|
|
fname=paste(inputdir, currentdir, testname, '.json', sep="")
|
|
if ( !file.exists(fname)) {
|
|
warning(paste("Skipping non-existent file: ", fname))
|
|
next
|
|
}
|
|
|
|
# Derive the name from the test result dirname
|
|
datasetname=basename(currentdir)
|
|
datasetvariant=resultsfilesshort[count]
|
|
|
|
# Import the data
|
|
fdata=fromJSON(fname)
|
|
fdata=fdata[[testname]]
|
|
# Copy the average result into a shorter, more accesible name
|
|
fdata$ips=fdata$Results$"instructions per cycle"$Result
|
|
fdata$Gcycles=fdata$Results$cycles$Result / Gdenom
|
|
fdata$Ginstructions=fdata$Results$instructions$Result / Gdenom
|
|
fdata$variant=rep(datasetvariant, length(fdata$Result) )
|
|
fdata$Runtime=rep(datasetname, length(fdata$Result) )
|
|
|
|
# Store away the bits we need
|
|
data=rbind(data, data.frame(
|
|
Result=fdata$ips,
|
|
Type="ips",
|
|
Runtime=fdata$Runtime,
|
|
variant=fdata$variant ) )
|
|
data=rbind(data, data.frame(
|
|
Result=fdata$Gcycles,
|
|
Type="Gcycles",
|
|
Runtime=fdata$Runtime,
|
|
variant=fdata$variant ) )
|
|
data=rbind(data, data.frame(
|
|
Result=fdata$Ginstructions,
|
|
Type="Ginstr",
|
|
Runtime=fdata$Runtime,
|
|
variant=fdata$variant ) )
|
|
|
|
# Store away some stats for the text table
|
|
dirstats=rbind(dirstats, round(fdata$ips, digits=2) )
|
|
dirstats=rbind(dirstats, round(fdata$Gcycles, digits=2) )
|
|
dirstats=rbind(dirstats, round(fdata$Ginstructions, digits=2) )
|
|
}
|
|
rstats=cbind(rstats, dirstats)
|
|
rstats_cols=append(rstats_cols, datasetname)
|
|
}
|
|
|
|
rstats_rows=c("IPS", "GCycles", "GInstr")
|
|
|
|
unts=c("Ins/Cyc", "G", "G")
|
|
rstats=cbind(rstats, unts)
|
|
rstats_cols=append(rstats_cols, "Units")
|
|
|
|
# If we have only 2 sets of results, then we can do some more
|
|
# stats math for the text table
|
|
if (length(resultdirs) == 2) {
|
|
# This is a touch hard wired - but we *know* we only have two
|
|
# datasets...
|
|
diff=c()
|
|
for (n in 1:3) {
|
|
difference = (as.double(rstats[n,2]) - as.double(rstats[n,1]))
|
|
val = 100 * (difference/as.double(rstats[n,1]))
|
|
diff=rbind(diff, round(val, digits=2))
|
|
}
|
|
rstats=cbind(rstats, diff)
|
|
rstats_cols=append(rstats_cols, "Diff %")
|
|
}
|
|
|
|
# Build us a text table of numerical results
|
|
stats_plot = suppressWarnings(ggtexttable(data.frame(rstats),
|
|
theme=ttheme(base_size=10),
|
|
rows=rstats_rows, cols=rstats_cols
|
|
))
|
|
|
|
# plot how samples varioed over 'time'
|
|
ipsdata <- subset(data, Type %in% c("ips"))
|
|
ips_plot <- ggplot() +
|
|
geom_bar(data=ipsdata, aes(Type, Result, fill=Runtime), stat="identity", position="dodge") +
|
|
xlab("Measure") +
|
|
ylab("IPS") +
|
|
ggtitle("Instructions Per Cycle") +
|
|
ylim(0, NA) +
|
|
theme(axis.text.x=element_text(angle=90))
|
|
|
|
cycdata <- subset(data, Type %in% c("Gcycles", "Ginstr"))
|
|
cycles_plot <- ggplot() +
|
|
geom_bar(data=cycdata, aes(Type, Result, fill=Runtime), stat="identity", position="dodge", show.legend=FALSE) +
|
|
xlab("Measure") +
|
|
ylab("Count (G)") +
|
|
ggtitle("Cycles and Instructions") +
|
|
ylim(0, NA) +
|
|
theme(axis.text.x=element_text(angle=90))
|
|
|
|
master_plot = grid.arrange(
|
|
ips_plot,
|
|
cycles_plot,
|
|
stats_plot,
|
|
nrow=2,
|
|
ncol=2 )
|