mirror of
https://github.com/aljazceru/kata-containers.git
synced 2025-12-17 22:34:25 +01:00
This PR adds the metrics report R files. Signed-off-by: Gabriela Cervantes <gabriela.cervantes.tellez@intel.com>
122 lines
3.2 KiB
R
122 lines
3.2 KiB
R
#!/usr/bin/env Rscript
|
|
# Copyright (c) 2018-2023 Intel Corporation
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Analyse the runtime component memory footprint data.
|
|
|
|
library(ggplot2) # ability to plot nicely.
|
|
# So we can plot multiple graphs
|
|
library(gridExtra) # together.
|
|
suppressMessages(suppressWarnings(library(ggpubr))) # for ggtexttable.
|
|
suppressMessages(library(jsonlite)) # to load the data.
|
|
|
|
testnames=c(
|
|
"memory-footprint",
|
|
"memory-footprint-ksm"
|
|
)
|
|
|
|
resultsfilesshort=c(
|
|
"noKSM",
|
|
"KSM"
|
|
)
|
|
|
|
data=c()
|
|
rstats=c()
|
|
rstats_names=c()
|
|
|
|
# For each set of results
|
|
for (currentdir in resultdirs) {
|
|
count=1
|
|
dirstats=c()
|
|
# For the two different types of memory footprint measures
|
|
for (testname in testnames) {
|
|
# R seems not to like double path slashes '//' ?
|
|
fname=paste(inputdir, currentdir, testname, '.json', sep="")
|
|
if ( !file.exists(fname)) {
|
|
warning(paste("Skipping non-existent file: ", fname))
|
|
next
|
|
}
|
|
|
|
# Derive the name from the test result dirname
|
|
datasetname=basename(currentdir)
|
|
datasetvariant=resultsfilesshort[count]
|
|
|
|
# Import the data
|
|
fdata=fromJSON(fname)
|
|
fdata=fdata[[testname]]
|
|
# Copy the average result into a shorter, more accesible name
|
|
fdata$Result=fdata$Results$average$Result
|
|
fdata$variant=rep(datasetvariant, length(fdata$Result) )
|
|
fdata$Runtime=rep(datasetname, length(fdata$Result) )
|
|
fdata$Count=seq_len(length(fdata$Result))
|
|
|
|
# Calculate some stats
|
|
fdata.mean = mean(fdata$Result)
|
|
fdata.min = min(fdata$Result)
|
|
fdata.max = max(fdata$Result)
|
|
fdata.sd = sd(fdata$Result)
|
|
fdata.cov = (fdata.sd / fdata.mean) * 100
|
|
|
|
# Store away the bits we need
|
|
data=rbind(data, data.frame(
|
|
Result=fdata$Result,
|
|
Count=fdata$Count,
|
|
Runtime=fdata$Runtime,
|
|
variant=fdata$variant ) )
|
|
|
|
# Store away some stats for the text table
|
|
dirstats[count]=round(fdata.mean, digits=2)
|
|
|
|
count = count + 1
|
|
}
|
|
rstats=rbind(rstats, dirstats)
|
|
rstats_names=rbind(rstats_names, datasetname)
|
|
}
|
|
|
|
rstats=cbind(rstats_names, rstats)
|
|
unts=rep("Kb", length(resultdirs))
|
|
|
|
# If we have only 2 sets of results, then we can do some more
|
|
# stats math for the text table
|
|
if (length(resultdirs) == 2) {
|
|
# This is a touch hard wired - but we *know* we only have two
|
|
# datasets...
|
|
diff=c("diff")
|
|
difference = (as.double(rstats[2,2]) - as.double(rstats[1,2]))
|
|
val = 100 * (difference/as.double(rstats[1,2]))
|
|
diff[2] = round(val, digits=2)
|
|
difference = (as.double(rstats[2,3]) - as.double(rstats[1,3]))
|
|
val = 100 * (difference/as.double(rstats[1,3]))
|
|
diff[3] = round(val, digits=2)
|
|
rstats=rbind(rstats, diff)
|
|
|
|
unts[3]="%"
|
|
}
|
|
|
|
rstats=cbind(rstats, unts)
|
|
|
|
# Set up the text table headers
|
|
colnames(rstats)=c("Results", resultsfilesshort, "Units")
|
|
|
|
# Build us a text table of numerical results
|
|
stats_plot = suppressWarnings(ggtexttable(data.frame(rstats),
|
|
theme=ttheme(base_size=10),
|
|
rows=NULL
|
|
))
|
|
|
|
# plot how samples varioed over 'time'
|
|
point_plot <- ggplot() +
|
|
geom_point( data=data, aes(Runtime, Result, color=variant), position=position_dodge(0.1)) +
|
|
xlab("Dataset") +
|
|
ylab("Size (Kb)") +
|
|
ggtitle("Average PSS footprint", subtitle="per container") +
|
|
ylim(0, NA) +
|
|
theme(axis.text.x=element_text(angle=90))
|
|
|
|
master_plot = grid.arrange(
|
|
point_plot,
|
|
stats_plot,
|
|
nrow=1,
|
|
ncol=2 )
|