Files
kata-containers/cli/kata-check.go
James O. D. Hunt 3a1bbd0271 tracing: Add initial opentracing support
Add initial support for opentracing by using the `jaeger` package.
Since opentracing uses the `context` package, add a `context.Context`
as the first parameter to all the functions that we might want to
trace. Trace "spans" (trace points) are then added by extracting the
trace details from the specified context parameter.

Notes:

- Although the tracer is created in `main()`, the "root span"
  (aka the first trace point) is not added until `beforeSubcommands()`.

  This is by design and is a compromise: by delaying the creation of the
  root span, the spans become much more readable since using the web-based
  JaegerUI, you will see traces like this:

  ```
  kata-runtime: kata-runtime create
  ------------  -------------------
       ^                ^
       |                |
  Trace name        First span name
                    (which clearly shows the CLI command that was run)
  ```

  Creating the span earlier means it is necessary to expand 'n' spans in
  the UI before you get to see the name of the CLI command that was run.
  In adding support, this became very tedious, hence my design decision to
  defer the creation of the root span until after signal handling has been
  setup and after CLI options have been parsed, but still very early in
  the code path.

  - At this stage, the tracing stops at the `virtcontainers` call
  boundary.

- Tracing is "always on" as there doesn't appear to be a way to toggle
  it. However, its resolves to a "nop" unless the tracer can talk to a
  jaeger agent.

Note that this commit required a bit of rework to `beforeSubcommands()`
to reduce the cyclomatic complexity.

Fixes #557.

Signed-off-by: James O. D. Hunt <james.o.hunt@intel.com>
2018-08-10 16:13:48 +01:00

378 lines
9.1 KiB
Go

// Copyright (c) 2017-2018 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0
//
// Note: To add a new architecture, implement all identifiers beginning "arch".
package main
/*
#include <linux/kvm.h>
const int ioctl_KVM_CREATE_VM = KVM_CREATE_VM;
*/
import "C"
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"regexp"
"strings"
"syscall"
vc "github.com/kata-containers/runtime/virtcontainers"
opentracing "github.com/opentracing/opentracing-go"
"github.com/sirupsen/logrus"
"github.com/urfave/cli"
)
type kernelModule struct {
// description
desc string
// maps parameter names to values
parameters map[string]string
}
type vmContainerCapableDetails struct {
cpuInfoFile string
requiredCPUFlags map[string]string
requiredCPUAttribs map[string]string
requiredKernelModules map[string]kernelModule
}
const (
moduleParamDir = "parameters"
successMessageCapable = "System is capable of running " + project
successMessageCreate = "System can currently create " + project
failMessage = "System is not capable of running " + project
kernelPropertyCorrect = "Kernel property value correct"
// these refer to fields in the procCPUINFO file
genericCPUFlagsTag = "flags"
genericCPUVendorField = "vendor_id"
genericCPUModelField = "model name"
)
// variables rather than consts to allow tests to modify them
var (
procCPUInfo = "/proc/cpuinfo"
sysModuleDir = "/sys/module"
modInfoCmd = "modinfo"
)
// variables rather than consts to allow tests to modify them
var (
kvmDevice = "/dev/kvm"
)
// getCPUInfo returns details of the first CPU read from the specified cpuinfo file
func getCPUInfo(cpuInfoFile string) (string, error) {
text, err := getFileContents(cpuInfoFile)
if err != nil {
return "", err
}
cpus := strings.SplitAfter(text, "\n\n")
trimmed := strings.TrimSpace(cpus[0])
if trimmed == "" {
return "", fmt.Errorf("Cannot determine CPU details")
}
return trimmed, nil
}
// findAnchoredString searches haystack for needle and returns true if found
func findAnchoredString(haystack, needle string) bool {
if haystack == "" || needle == "" {
return false
}
// Ensure the search string is anchored
pattern := regexp.MustCompile(`\b` + needle + `\b`)
return pattern.MatchString(haystack)
}
// getCPUFlags returns the CPU flags from the cpuinfo file specified
func getCPUFlags(cpuinfo string) string {
for _, line := range strings.Split(cpuinfo, "\n") {
if strings.HasPrefix(line, cpuFlagsTag) {
fields := strings.Split(line, ":")
if len(fields) == 2 {
return strings.TrimSpace(fields[1])
}
}
}
return ""
}
// haveKernelModule returns true if the specified module exists
// (either loaded or available to be loaded)
func haveKernelModule(module string) bool {
// First, check to see if the module is already loaded
path := filepath.Join(sysModuleDir, module)
if fileExists(path) {
return true
}
// Now, check if the module is unloaded, but available
cmd := exec.Command(modInfoCmd, module)
err := cmd.Run()
return err == nil
}
// checkCPU checks all required CPU attributes modules and returns a count of
// the number of CPU attribute errors (all of which are logged by this
// function). The specified tag is simply used for logging purposes.
func checkCPU(tag, cpuinfo string, attribs map[string]string) (count uint32) {
if cpuinfo == "" {
return 0
}
for attrib, desc := range attribs {
fields := logrus.Fields{
"type": tag,
"name": attrib,
"description": desc,
}
found := findAnchoredString(cpuinfo, attrib)
if !found {
kataLog.WithFields(fields).Errorf("CPU property not found")
count++
continue
}
kataLog.WithFields(fields).Infof("CPU property found")
}
return count
}
func checkCPUFlags(cpuflags string, required map[string]string) uint32 {
return checkCPU("flag", cpuflags, required)
}
func checkCPUAttribs(cpuinfo string, attribs map[string]string) uint32 {
return checkCPU("attribute", cpuinfo, attribs)
}
// kernelParamHandler represents a function that allows kernel module
// parameter errors to be ignored for special scenarios.
//
// The function is passed the following parameters:
//
// onVMM - `true` if the host is running under a VMM environment
// fields - A set of fields showing the expected and actual module parameter values.
// msg - The message that would be logged showing the incorrect kernel module
// parameter.
//
// The function must return `true` if the kernel module parameter error should
// be ignored, or `false` if it is a real error.
//
// Note: it is up to the function to add an appropriate log call if the error
// should be ignored.
type kernelParamHandler func(onVMM bool, fields logrus.Fields, msg string) bool
// checkKernelModules checks all required kernel modules modules and returns a count of
// the number of module errors (all of which are logged by this
// function). Only fatal errors result in an error return.
func checkKernelModules(modules map[string]kernelModule, handler kernelParamHandler) (count uint32, err error) {
onVMM, err := vc.RunningOnVMM(procCPUInfo)
if err != nil {
return 0, err
}
for module, details := range modules {
fields := logrus.Fields{
"type": "module",
"name": module,
"description": details.desc,
}
if !haveKernelModule(module) {
kataLog.WithFields(fields).Error("kernel property not found")
count++
continue
}
kataLog.WithFields(fields).Infof("kernel property found")
for param, expected := range details.parameters {
path := filepath.Join(sysModuleDir, module, moduleParamDir, param)
value, err := getFileContents(path)
if err != nil {
return 0, err
}
value = strings.TrimRight(value, "\n\r")
fields["parameter"] = param
fields["value"] = value
if value != expected {
fields["expected"] = expected
msg := "kernel module parameter has unexpected value"
if handler != nil {
ignoreError := handler(onVMM, fields, msg)
if ignoreError {
continue
}
}
kataLog.WithFields(fields).Error(msg)
count++
}
kataLog.WithFields(fields).Info(kernelPropertyCorrect)
}
}
return count, nil
}
// genericHostIsVMContainerCapable checks to see if the host is theoretically capable
// of creating a VM container.
func genericHostIsVMContainerCapable(details vmContainerCapableDetails) error {
cpuinfo, err := getCPUInfo(details.cpuInfoFile)
if err != nil {
return err
}
cpuFlags := getCPUFlags(cpuinfo)
if cpuFlags == "" {
return fmt.Errorf("Cannot find CPU flags")
}
// Keep a track of the error count, but don't error until all tests
// have been performed!
errorCount := uint32(0)
count := checkCPUAttribs(cpuinfo, details.requiredCPUAttribs)
errorCount += count
count = checkCPUFlags(cpuFlags, details.requiredCPUFlags)
errorCount += count
count, err = checkKernelModules(details.requiredKernelModules, archKernelParamHandler)
if err != nil {
return err
}
errorCount += count
if errorCount == 0 {
return nil
}
return fmt.Errorf("ERROR: %s", failMessage)
}
var kataCheckCLICommand = cli.Command{
Name: checkCmd,
Usage: "tests if system can run " + project,
Action: func(context *cli.Context) error {
ctx, err := cliContextToContext(context)
if err != nil {
return err
}
span, _ := opentracing.StartSpanFromContext(ctx, "kata-check")
defer span.Finish()
setCPUtype()
details := vmContainerCapableDetails{
cpuInfoFile: procCPUInfo,
requiredCPUFlags: archRequiredCPUFlags,
requiredCPUAttribs: archRequiredCPUAttribs,
requiredKernelModules: archRequiredKernelModules,
}
err = hostIsVMContainerCapable(details)
if err != nil {
return err
}
kataLog.Info(successMessageCapable)
if os.Geteuid() == 0 {
err = archHostCanCreateVMContainer()
if err != nil {
return err
}
kataLog.Info(successMessageCreate)
}
return nil
},
}
func genericArchKernelParamHandler(onVMM bool, fields logrus.Fields, msg string) bool {
param, ok := fields["parameter"].(string)
if !ok {
return false
}
// This option is not required when
// already running under a hypervisor.
if param == "unrestricted_guest" && onVMM {
kataLog.WithFields(fields).Warn(kernelPropertyCorrect)
return true
}
if param == "nested" {
kataLog.WithFields(fields).Warn(msg)
return true
}
// don't ignore the error
return false
}
// genericKvmIsUsable determines if it will be possible to create a full virtual machine
// by creating a minimal VM and then deleting it.
func genericKvmIsUsable() error {
flags := syscall.O_RDWR | syscall.O_CLOEXEC
f, err := syscall.Open(kvmDevice, flags, 0)
if err != nil {
return err
}
defer syscall.Close(f)
fieldLogger := kataLog.WithField("check-type", "full")
fieldLogger.WithField("device", kvmDevice).Info("device available")
vm, _, errno := syscall.Syscall(syscall.SYS_IOCTL,
uintptr(f),
uintptr(C.ioctl_KVM_CREATE_VM),
0)
if errno != 0 {
if errno == syscall.EBUSY {
fieldLogger.WithField("reason", "another hypervisor running").Error("cannot create VM")
}
return errno
}
defer syscall.Close(int(vm))
fieldLogger.WithField("feature", "create-vm").Info("feature available")
return nil
}