mirror of
https://github.com/aljazceru/kata-containers.git
synced 2025-12-27 11:04:21 +01:00
Add initial support for opentracing by using the `jaeger` package.
Since opentracing uses the `context` package, add a `context.Context`
as the first parameter to all the functions that we might want to
trace. Trace "spans" (trace points) are then added by extracting the
trace details from the specified context parameter.
Notes:
- Although the tracer is created in `main()`, the "root span"
(aka the first trace point) is not added until `beforeSubcommands()`.
This is by design and is a compromise: by delaying the creation of the
root span, the spans become much more readable since using the web-based
JaegerUI, you will see traces like this:
```
kata-runtime: kata-runtime create
------------ -------------------
^ ^
| |
Trace name First span name
(which clearly shows the CLI command that was run)
```
Creating the span earlier means it is necessary to expand 'n' spans in
the UI before you get to see the name of the CLI command that was run.
In adding support, this became very tedious, hence my design decision to
defer the creation of the root span until after signal handling has been
setup and after CLI options have been parsed, but still very early in
the code path.
- At this stage, the tracing stops at the `virtcontainers` call
boundary.
- Tracing is "always on" as there doesn't appear to be a way to toggle
it. However, its resolves to a "nop" unless the tracer can talk to a
jaeger agent.
Note that this commit required a bit of rework to `beforeSubcommands()`
to reduce the cyclomatic complexity.
Fixes #557.
Signed-off-by: James O. D. Hunt <james.o.hunt@intel.com>
816 lines
22 KiB
Go
816 lines
22 KiB
Go
/*
|
|
* Licensed to the Apache Software Foundation (ASF) under one
|
|
* or more contributor license agreements. See the NOTICE file
|
|
* distributed with this work for additional information
|
|
* regarding copyright ownership. The ASF licenses this file
|
|
* to you under the Apache License, Version 2.0 (the
|
|
* "License"); you may not use this file except in compliance
|
|
* with the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing,
|
|
* software distributed under the License is distributed on an
|
|
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
* KIND, either express or implied. See the License for the
|
|
* specific language governing permissions and limitations
|
|
* under the License.
|
|
*/
|
|
|
|
package thrift
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
)
|
|
|
|
const (
|
|
COMPACT_PROTOCOL_ID = 0x082
|
|
COMPACT_VERSION = 1
|
|
COMPACT_VERSION_MASK = 0x1f
|
|
COMPACT_TYPE_MASK = 0x0E0
|
|
COMPACT_TYPE_BITS = 0x07
|
|
COMPACT_TYPE_SHIFT_AMOUNT = 5
|
|
)
|
|
|
|
type tCompactType byte
|
|
|
|
const (
|
|
COMPACT_BOOLEAN_TRUE = 0x01
|
|
COMPACT_BOOLEAN_FALSE = 0x02
|
|
COMPACT_BYTE = 0x03
|
|
COMPACT_I16 = 0x04
|
|
COMPACT_I32 = 0x05
|
|
COMPACT_I64 = 0x06
|
|
COMPACT_DOUBLE = 0x07
|
|
COMPACT_BINARY = 0x08
|
|
COMPACT_LIST = 0x09
|
|
COMPACT_SET = 0x0A
|
|
COMPACT_MAP = 0x0B
|
|
COMPACT_STRUCT = 0x0C
|
|
)
|
|
|
|
var (
|
|
ttypeToCompactType map[TType]tCompactType
|
|
)
|
|
|
|
func init() {
|
|
ttypeToCompactType = map[TType]tCompactType{
|
|
STOP: STOP,
|
|
BOOL: COMPACT_BOOLEAN_TRUE,
|
|
BYTE: COMPACT_BYTE,
|
|
I16: COMPACT_I16,
|
|
I32: COMPACT_I32,
|
|
I64: COMPACT_I64,
|
|
DOUBLE: COMPACT_DOUBLE,
|
|
STRING: COMPACT_BINARY,
|
|
LIST: COMPACT_LIST,
|
|
SET: COMPACT_SET,
|
|
MAP: COMPACT_MAP,
|
|
STRUCT: COMPACT_STRUCT,
|
|
}
|
|
}
|
|
|
|
type TCompactProtocolFactory struct{}
|
|
|
|
func NewTCompactProtocolFactory() *TCompactProtocolFactory {
|
|
return &TCompactProtocolFactory{}
|
|
}
|
|
|
|
func (p *TCompactProtocolFactory) GetProtocol(trans TTransport) TProtocol {
|
|
return NewTCompactProtocol(trans)
|
|
}
|
|
|
|
type TCompactProtocol struct {
|
|
trans TRichTransport
|
|
origTransport TTransport
|
|
|
|
// Used to keep track of the last field for the current and previous structs,
|
|
// so we can do the delta stuff.
|
|
lastField []int
|
|
lastFieldId int
|
|
|
|
// If we encounter a boolean field begin, save the TField here so it can
|
|
// have the value incorporated.
|
|
booleanFieldName string
|
|
booleanFieldId int16
|
|
booleanFieldPending bool
|
|
|
|
// If we read a field header, and it's a boolean field, save the boolean
|
|
// value here so that readBool can use it.
|
|
boolValue bool
|
|
boolValueIsNotNull bool
|
|
buffer [64]byte
|
|
}
|
|
|
|
// Create a TCompactProtocol given a TTransport
|
|
func NewTCompactProtocol(trans TTransport) *TCompactProtocol {
|
|
p := &TCompactProtocol{origTransport: trans, lastField: []int{}}
|
|
if et, ok := trans.(TRichTransport); ok {
|
|
p.trans = et
|
|
} else {
|
|
p.trans = NewTRichTransport(trans)
|
|
}
|
|
|
|
return p
|
|
|
|
}
|
|
|
|
//
|
|
// Public Writing methods.
|
|
//
|
|
|
|
// Write a message header to the wire. Compact Protocol messages contain the
|
|
// protocol version so we can migrate forwards in the future if need be.
|
|
func (p *TCompactProtocol) WriteMessageBegin(name string, typeId TMessageType, seqid int32) error {
|
|
err := p.writeByteDirect(COMPACT_PROTOCOL_ID)
|
|
if err != nil {
|
|
return NewTProtocolException(err)
|
|
}
|
|
err = p.writeByteDirect((COMPACT_VERSION & COMPACT_VERSION_MASK) | ((byte(typeId) << COMPACT_TYPE_SHIFT_AMOUNT) & COMPACT_TYPE_MASK))
|
|
if err != nil {
|
|
return NewTProtocolException(err)
|
|
}
|
|
_, err = p.writeVarint32(seqid)
|
|
if err != nil {
|
|
return NewTProtocolException(err)
|
|
}
|
|
e := p.WriteString(name)
|
|
return e
|
|
|
|
}
|
|
|
|
func (p *TCompactProtocol) WriteMessageEnd() error { return nil }
|
|
|
|
// Write a struct begin. This doesn't actually put anything on the wire. We
|
|
// use it as an opportunity to put special placeholder markers on the field
|
|
// stack so we can get the field id deltas correct.
|
|
func (p *TCompactProtocol) WriteStructBegin(name string) error {
|
|
p.lastField = append(p.lastField, p.lastFieldId)
|
|
p.lastFieldId = 0
|
|
return nil
|
|
}
|
|
|
|
// Write a struct end. This doesn't actually put anything on the wire. We use
|
|
// this as an opportunity to pop the last field from the current struct off
|
|
// of the field stack.
|
|
func (p *TCompactProtocol) WriteStructEnd() error {
|
|
p.lastFieldId = p.lastField[len(p.lastField)-1]
|
|
p.lastField = p.lastField[:len(p.lastField)-1]
|
|
return nil
|
|
}
|
|
|
|
func (p *TCompactProtocol) WriteFieldBegin(name string, typeId TType, id int16) error {
|
|
if typeId == BOOL {
|
|
// we want to possibly include the value, so we'll wait.
|
|
p.booleanFieldName, p.booleanFieldId, p.booleanFieldPending = name, id, true
|
|
return nil
|
|
}
|
|
_, err := p.writeFieldBeginInternal(name, typeId, id, 0xFF)
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
// The workhorse of writeFieldBegin. It has the option of doing a
|
|
// 'type override' of the type header. This is used specifically in the
|
|
// boolean field case.
|
|
func (p *TCompactProtocol) writeFieldBeginInternal(name string, typeId TType, id int16, typeOverride byte) (int, error) {
|
|
// short lastField = lastField_.pop();
|
|
|
|
// if there's a type override, use that.
|
|
var typeToWrite byte
|
|
if typeOverride == 0xFF {
|
|
typeToWrite = byte(p.getCompactType(typeId))
|
|
} else {
|
|
typeToWrite = typeOverride
|
|
}
|
|
// check if we can use delta encoding for the field id
|
|
fieldId := int(id)
|
|
written := 0
|
|
if fieldId > p.lastFieldId && fieldId-p.lastFieldId <= 15 {
|
|
// write them together
|
|
err := p.writeByteDirect(byte((fieldId-p.lastFieldId)<<4) | typeToWrite)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
} else {
|
|
// write them separate
|
|
err := p.writeByteDirect(typeToWrite)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
err = p.WriteI16(id)
|
|
written = 1 + 2
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
}
|
|
|
|
p.lastFieldId = fieldId
|
|
// p.lastField.Push(field.id);
|
|
return written, nil
|
|
}
|
|
|
|
func (p *TCompactProtocol) WriteFieldEnd() error { return nil }
|
|
|
|
func (p *TCompactProtocol) WriteFieldStop() error {
|
|
err := p.writeByteDirect(STOP)
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
func (p *TCompactProtocol) WriteMapBegin(keyType TType, valueType TType, size int) error {
|
|
if size == 0 {
|
|
err := p.writeByteDirect(0)
|
|
return NewTProtocolException(err)
|
|
}
|
|
_, err := p.writeVarint32(int32(size))
|
|
if err != nil {
|
|
return NewTProtocolException(err)
|
|
}
|
|
err = p.writeByteDirect(byte(p.getCompactType(keyType))<<4 | byte(p.getCompactType(valueType)))
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
func (p *TCompactProtocol) WriteMapEnd() error { return nil }
|
|
|
|
// Write a list header.
|
|
func (p *TCompactProtocol) WriteListBegin(elemType TType, size int) error {
|
|
_, err := p.writeCollectionBegin(elemType, size)
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
func (p *TCompactProtocol) WriteListEnd() error { return nil }
|
|
|
|
// Write a set header.
|
|
func (p *TCompactProtocol) WriteSetBegin(elemType TType, size int) error {
|
|
_, err := p.writeCollectionBegin(elemType, size)
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
func (p *TCompactProtocol) WriteSetEnd() error { return nil }
|
|
|
|
func (p *TCompactProtocol) WriteBool(value bool) error {
|
|
v := byte(COMPACT_BOOLEAN_FALSE)
|
|
if value {
|
|
v = byte(COMPACT_BOOLEAN_TRUE)
|
|
}
|
|
if p.booleanFieldPending {
|
|
// we haven't written the field header yet
|
|
_, err := p.writeFieldBeginInternal(p.booleanFieldName, BOOL, p.booleanFieldId, v)
|
|
p.booleanFieldPending = false
|
|
return NewTProtocolException(err)
|
|
}
|
|
// we're not part of a field, so just write the value.
|
|
err := p.writeByteDirect(v)
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
// Write a byte. Nothing to see here!
|
|
func (p *TCompactProtocol) WriteByte(value int8) error {
|
|
err := p.writeByteDirect(byte(value))
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
// Write an I16 as a zigzag varint.
|
|
func (p *TCompactProtocol) WriteI16(value int16) error {
|
|
_, err := p.writeVarint32(p.int32ToZigzag(int32(value)))
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
// Write an i32 as a zigzag varint.
|
|
func (p *TCompactProtocol) WriteI32(value int32) error {
|
|
_, err := p.writeVarint32(p.int32ToZigzag(value))
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
// Write an i64 as a zigzag varint.
|
|
func (p *TCompactProtocol) WriteI64(value int64) error {
|
|
_, err := p.writeVarint64(p.int64ToZigzag(value))
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
// Write a double to the wire as 8 bytes.
|
|
func (p *TCompactProtocol) WriteDouble(value float64) error {
|
|
buf := p.buffer[0:8]
|
|
binary.LittleEndian.PutUint64(buf, math.Float64bits(value))
|
|
_, err := p.trans.Write(buf)
|
|
return NewTProtocolException(err)
|
|
}
|
|
|
|
// Write a string to the wire with a varint size preceding.
|
|
func (p *TCompactProtocol) WriteString(value string) error {
|
|
_, e := p.writeVarint32(int32(len(value)))
|
|
if e != nil {
|
|
return NewTProtocolException(e)
|
|
}
|
|
if len(value) > 0 {
|
|
}
|
|
_, e = p.trans.WriteString(value)
|
|
return e
|
|
}
|
|
|
|
// Write a byte array, using a varint for the size.
|
|
func (p *TCompactProtocol) WriteBinary(bin []byte) error {
|
|
_, e := p.writeVarint32(int32(len(bin)))
|
|
if e != nil {
|
|
return NewTProtocolException(e)
|
|
}
|
|
if len(bin) > 0 {
|
|
_, e = p.trans.Write(bin)
|
|
return NewTProtocolException(e)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
//
|
|
// Reading methods.
|
|
//
|
|
|
|
// Read a message header.
|
|
func (p *TCompactProtocol) ReadMessageBegin() (name string, typeId TMessageType, seqId int32, err error) {
|
|
|
|
protocolId, err := p.readByteDirect()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
if protocolId != COMPACT_PROTOCOL_ID {
|
|
e := fmt.Errorf("Expected protocol id %02x but got %02x", COMPACT_PROTOCOL_ID, protocolId)
|
|
return "", typeId, seqId, NewTProtocolExceptionWithType(BAD_VERSION, e)
|
|
}
|
|
|
|
versionAndType, err := p.readByteDirect()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
version := versionAndType & COMPACT_VERSION_MASK
|
|
typeId = TMessageType((versionAndType >> COMPACT_TYPE_SHIFT_AMOUNT) & COMPACT_TYPE_BITS)
|
|
if version != COMPACT_VERSION {
|
|
e := fmt.Errorf("Expected version %02x but got %02x", COMPACT_VERSION, version)
|
|
err = NewTProtocolExceptionWithType(BAD_VERSION, e)
|
|
return
|
|
}
|
|
seqId, e := p.readVarint32()
|
|
if e != nil {
|
|
err = NewTProtocolException(e)
|
|
return
|
|
}
|
|
name, err = p.ReadString()
|
|
return
|
|
}
|
|
|
|
func (p *TCompactProtocol) ReadMessageEnd() error { return nil }
|
|
|
|
// Read a struct begin. There's nothing on the wire for this, but it is our
|
|
// opportunity to push a new struct begin marker onto the field stack.
|
|
func (p *TCompactProtocol) ReadStructBegin() (name string, err error) {
|
|
p.lastField = append(p.lastField, p.lastFieldId)
|
|
p.lastFieldId = 0
|
|
return
|
|
}
|
|
|
|
// Doesn't actually consume any wire data, just removes the last field for
|
|
// this struct from the field stack.
|
|
func (p *TCompactProtocol) ReadStructEnd() error {
|
|
// consume the last field we read off the wire.
|
|
p.lastFieldId = p.lastField[len(p.lastField)-1]
|
|
p.lastField = p.lastField[:len(p.lastField)-1]
|
|
return nil
|
|
}
|
|
|
|
// Read a field header off the wire.
|
|
func (p *TCompactProtocol) ReadFieldBegin() (name string, typeId TType, id int16, err error) {
|
|
t, err := p.readByteDirect()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// if it's a stop, then we can return immediately, as the struct is over.
|
|
if (t & 0x0f) == STOP {
|
|
return "", STOP, 0, nil
|
|
}
|
|
|
|
// mask off the 4 MSB of the type header. it could contain a field id delta.
|
|
modifier := int16((t & 0xf0) >> 4)
|
|
if modifier == 0 {
|
|
// not a delta. look ahead for the zigzag varint field id.
|
|
id, err = p.ReadI16()
|
|
if err != nil {
|
|
return
|
|
}
|
|
} else {
|
|
// has a delta. add the delta to the last read field id.
|
|
id = int16(p.lastFieldId) + modifier
|
|
}
|
|
typeId, e := p.getTType(tCompactType(t & 0x0f))
|
|
if e != nil {
|
|
err = NewTProtocolException(e)
|
|
return
|
|
}
|
|
|
|
// if this happens to be a boolean field, the value is encoded in the type
|
|
if p.isBoolType(t) {
|
|
// save the boolean value in a special instance variable.
|
|
p.boolValue = (byte(t)&0x0f == COMPACT_BOOLEAN_TRUE)
|
|
p.boolValueIsNotNull = true
|
|
}
|
|
|
|
// push the new field onto the field stack so we can keep the deltas going.
|
|
p.lastFieldId = int(id)
|
|
return
|
|
}
|
|
|
|
func (p *TCompactProtocol) ReadFieldEnd() error { return nil }
|
|
|
|
// Read a map header off the wire. If the size is zero, skip reading the key
|
|
// and value type. This means that 0-length maps will yield TMaps without the
|
|
// "correct" types.
|
|
func (p *TCompactProtocol) ReadMapBegin() (keyType TType, valueType TType, size int, err error) {
|
|
size32, e := p.readVarint32()
|
|
if e != nil {
|
|
err = NewTProtocolException(e)
|
|
return
|
|
}
|
|
if size32 < 0 {
|
|
err = invalidDataLength
|
|
return
|
|
}
|
|
size = int(size32)
|
|
|
|
keyAndValueType := byte(STOP)
|
|
if size != 0 {
|
|
keyAndValueType, err = p.readByteDirect()
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
keyType, _ = p.getTType(tCompactType(keyAndValueType >> 4))
|
|
valueType, _ = p.getTType(tCompactType(keyAndValueType & 0xf))
|
|
return
|
|
}
|
|
|
|
func (p *TCompactProtocol) ReadMapEnd() error { return nil }
|
|
|
|
// Read a list header off the wire. If the list size is 0-14, the size will
|
|
// be packed into the element type header. If it's a longer list, the 4 MSB
|
|
// of the element type header will be 0xF, and a varint will follow with the
|
|
// true size.
|
|
func (p *TCompactProtocol) ReadListBegin() (elemType TType, size int, err error) {
|
|
size_and_type, err := p.readByteDirect()
|
|
if err != nil {
|
|
return
|
|
}
|
|
size = int((size_and_type >> 4) & 0x0f)
|
|
if size == 15 {
|
|
size2, e := p.readVarint32()
|
|
if e != nil {
|
|
err = NewTProtocolException(e)
|
|
return
|
|
}
|
|
if size2 < 0 {
|
|
err = invalidDataLength
|
|
return
|
|
}
|
|
size = int(size2)
|
|
}
|
|
elemType, e := p.getTType(tCompactType(size_and_type))
|
|
if e != nil {
|
|
err = NewTProtocolException(e)
|
|
return
|
|
}
|
|
return
|
|
}
|
|
|
|
func (p *TCompactProtocol) ReadListEnd() error { return nil }
|
|
|
|
// Read a set header off the wire. If the set size is 0-14, the size will
|
|
// be packed into the element type header. If it's a longer set, the 4 MSB
|
|
// of the element type header will be 0xF, and a varint will follow with the
|
|
// true size.
|
|
func (p *TCompactProtocol) ReadSetBegin() (elemType TType, size int, err error) {
|
|
return p.ReadListBegin()
|
|
}
|
|
|
|
func (p *TCompactProtocol) ReadSetEnd() error { return nil }
|
|
|
|
// Read a boolean off the wire. If this is a boolean field, the value should
|
|
// already have been read during readFieldBegin, so we'll just consume the
|
|
// pre-stored value. Otherwise, read a byte.
|
|
func (p *TCompactProtocol) ReadBool() (value bool, err error) {
|
|
if p.boolValueIsNotNull {
|
|
p.boolValueIsNotNull = false
|
|
return p.boolValue, nil
|
|
}
|
|
v, err := p.readByteDirect()
|
|
return v == COMPACT_BOOLEAN_TRUE, err
|
|
}
|
|
|
|
// Read a single byte off the wire. Nothing interesting here.
|
|
func (p *TCompactProtocol) ReadByte() (int8, error) {
|
|
v, err := p.readByteDirect()
|
|
if err != nil {
|
|
return 0, NewTProtocolException(err)
|
|
}
|
|
return int8(v), err
|
|
}
|
|
|
|
// Read an i16 from the wire as a zigzag varint.
|
|
func (p *TCompactProtocol) ReadI16() (value int16, err error) {
|
|
v, err := p.ReadI32()
|
|
return int16(v), err
|
|
}
|
|
|
|
// Read an i32 from the wire as a zigzag varint.
|
|
func (p *TCompactProtocol) ReadI32() (value int32, err error) {
|
|
v, e := p.readVarint32()
|
|
if e != nil {
|
|
return 0, NewTProtocolException(e)
|
|
}
|
|
value = p.zigzagToInt32(v)
|
|
return value, nil
|
|
}
|
|
|
|
// Read an i64 from the wire as a zigzag varint.
|
|
func (p *TCompactProtocol) ReadI64() (value int64, err error) {
|
|
v, e := p.readVarint64()
|
|
if e != nil {
|
|
return 0, NewTProtocolException(e)
|
|
}
|
|
value = p.zigzagToInt64(v)
|
|
return value, nil
|
|
}
|
|
|
|
// No magic here - just read a double off the wire.
|
|
func (p *TCompactProtocol) ReadDouble() (value float64, err error) {
|
|
longBits := p.buffer[0:8]
|
|
_, e := io.ReadFull(p.trans, longBits)
|
|
if e != nil {
|
|
return 0.0, NewTProtocolException(e)
|
|
}
|
|
return math.Float64frombits(p.bytesToUint64(longBits)), nil
|
|
}
|
|
|
|
// Reads a []byte (via readBinary), and then UTF-8 decodes it.
|
|
func (p *TCompactProtocol) ReadString() (value string, err error) {
|
|
length, e := p.readVarint32()
|
|
if e != nil {
|
|
return "", NewTProtocolException(e)
|
|
}
|
|
if length < 0 {
|
|
return "", invalidDataLength
|
|
}
|
|
if uint64(length) > p.trans.RemainingBytes() {
|
|
return "", invalidDataLength
|
|
}
|
|
|
|
if length == 0 {
|
|
return "", nil
|
|
}
|
|
var buf []byte
|
|
if length <= int32(len(p.buffer)) {
|
|
buf = p.buffer[0:length]
|
|
} else {
|
|
buf = make([]byte, length)
|
|
}
|
|
_, e = io.ReadFull(p.trans, buf)
|
|
return string(buf), NewTProtocolException(e)
|
|
}
|
|
|
|
// Read a []byte from the wire.
|
|
func (p *TCompactProtocol) ReadBinary() (value []byte, err error) {
|
|
length, e := p.readVarint32()
|
|
if e != nil {
|
|
return nil, NewTProtocolException(e)
|
|
}
|
|
if length == 0 {
|
|
return []byte{}, nil
|
|
}
|
|
if length < 0 {
|
|
return nil, invalidDataLength
|
|
}
|
|
if uint64(length) > p.trans.RemainingBytes() {
|
|
return nil, invalidDataLength
|
|
}
|
|
|
|
buf := make([]byte, length)
|
|
_, e = io.ReadFull(p.trans, buf)
|
|
return buf, NewTProtocolException(e)
|
|
}
|
|
|
|
func (p *TCompactProtocol) Flush() (err error) {
|
|
return NewTProtocolException(p.trans.Flush())
|
|
}
|
|
|
|
func (p *TCompactProtocol) Skip(fieldType TType) (err error) {
|
|
return SkipDefaultDepth(p, fieldType)
|
|
}
|
|
|
|
func (p *TCompactProtocol) Transport() TTransport {
|
|
return p.origTransport
|
|
}
|
|
|
|
//
|
|
// Internal writing methods
|
|
//
|
|
|
|
// Abstract method for writing the start of lists and sets. List and sets on
|
|
// the wire differ only by the type indicator.
|
|
func (p *TCompactProtocol) writeCollectionBegin(elemType TType, size int) (int, error) {
|
|
if size <= 14 {
|
|
return 1, p.writeByteDirect(byte(int32(size<<4) | int32(p.getCompactType(elemType))))
|
|
}
|
|
err := p.writeByteDirect(0xf0 | byte(p.getCompactType(elemType)))
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
m, err := p.writeVarint32(int32(size))
|
|
return 1 + m, err
|
|
}
|
|
|
|
// Write an i32 as a varint. Results in 1-5 bytes on the wire.
|
|
// TODO(pomack): make a permanent buffer like writeVarint64?
|
|
func (p *TCompactProtocol) writeVarint32(n int32) (int, error) {
|
|
i32buf := p.buffer[0:5]
|
|
idx := 0
|
|
for {
|
|
if (n & ^0x7F) == 0 {
|
|
i32buf[idx] = byte(n)
|
|
idx++
|
|
// p.writeByteDirect(byte(n));
|
|
break
|
|
// return;
|
|
} else {
|
|
i32buf[idx] = byte((n & 0x7F) | 0x80)
|
|
idx++
|
|
// p.writeByteDirect(byte(((n & 0x7F) | 0x80)));
|
|
u := uint32(n)
|
|
n = int32(u >> 7)
|
|
}
|
|
}
|
|
return p.trans.Write(i32buf[0:idx])
|
|
}
|
|
|
|
// Write an i64 as a varint. Results in 1-10 bytes on the wire.
|
|
func (p *TCompactProtocol) writeVarint64(n int64) (int, error) {
|
|
varint64out := p.buffer[0:10]
|
|
idx := 0
|
|
for {
|
|
if (n & ^0x7F) == 0 {
|
|
varint64out[idx] = byte(n)
|
|
idx++
|
|
break
|
|
} else {
|
|
varint64out[idx] = byte((n & 0x7F) | 0x80)
|
|
idx++
|
|
u := uint64(n)
|
|
n = int64(u >> 7)
|
|
}
|
|
}
|
|
return p.trans.Write(varint64out[0:idx])
|
|
}
|
|
|
|
// Convert l into a zigzag long. This allows negative numbers to be
|
|
// represented compactly as a varint.
|
|
func (p *TCompactProtocol) int64ToZigzag(l int64) int64 {
|
|
return (l << 1) ^ (l >> 63)
|
|
}
|
|
|
|
// Convert l into a zigzag long. This allows negative numbers to be
|
|
// represented compactly as a varint.
|
|
func (p *TCompactProtocol) int32ToZigzag(n int32) int32 {
|
|
return (n << 1) ^ (n >> 31)
|
|
}
|
|
|
|
func (p *TCompactProtocol) fixedUint64ToBytes(n uint64, buf []byte) {
|
|
binary.LittleEndian.PutUint64(buf, n)
|
|
}
|
|
|
|
func (p *TCompactProtocol) fixedInt64ToBytes(n int64, buf []byte) {
|
|
binary.LittleEndian.PutUint64(buf, uint64(n))
|
|
}
|
|
|
|
// Writes a byte without any possibility of all that field header nonsense.
|
|
// Used internally by other writing methods that know they need to write a byte.
|
|
func (p *TCompactProtocol) writeByteDirect(b byte) error {
|
|
return p.trans.WriteByte(b)
|
|
}
|
|
|
|
// Writes a byte without any possibility of all that field header nonsense.
|
|
func (p *TCompactProtocol) writeIntAsByteDirect(n int) (int, error) {
|
|
return 1, p.writeByteDirect(byte(n))
|
|
}
|
|
|
|
//
|
|
// Internal reading methods
|
|
//
|
|
|
|
// Read an i32 from the wire as a varint. The MSB of each byte is set
|
|
// if there is another byte to follow. This can read up to 5 bytes.
|
|
func (p *TCompactProtocol) readVarint32() (int32, error) {
|
|
// if the wire contains the right stuff, this will just truncate the i64 we
|
|
// read and get us the right sign.
|
|
v, err := p.readVarint64()
|
|
return int32(v), err
|
|
}
|
|
|
|
// Read an i64 from the wire as a proper varint. The MSB of each byte is set
|
|
// if there is another byte to follow. This can read up to 10 bytes.
|
|
func (p *TCompactProtocol) readVarint64() (int64, error) {
|
|
shift := uint(0)
|
|
result := int64(0)
|
|
for {
|
|
b, err := p.readByteDirect()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
result |= int64(b&0x7f) << shift
|
|
if (b & 0x80) != 0x80 {
|
|
break
|
|
}
|
|
shift += 7
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
// Read a byte, unlike ReadByte that reads Thrift-byte that is i8.
|
|
func (p *TCompactProtocol) readByteDirect() (byte, error) {
|
|
return p.trans.ReadByte()
|
|
}
|
|
|
|
//
|
|
// encoding helpers
|
|
//
|
|
|
|
// Convert from zigzag int to int.
|
|
func (p *TCompactProtocol) zigzagToInt32(n int32) int32 {
|
|
u := uint32(n)
|
|
return int32(u>>1) ^ -(n & 1)
|
|
}
|
|
|
|
// Convert from zigzag long to long.
|
|
func (p *TCompactProtocol) zigzagToInt64(n int64) int64 {
|
|
u := uint64(n)
|
|
return int64(u>>1) ^ -(n & 1)
|
|
}
|
|
|
|
// Note that it's important that the mask bytes are long literals,
|
|
// otherwise they'll default to ints, and when you shift an int left 56 bits,
|
|
// you just get a messed up int.
|
|
func (p *TCompactProtocol) bytesToInt64(b []byte) int64 {
|
|
return int64(binary.LittleEndian.Uint64(b))
|
|
}
|
|
|
|
// Note that it's important that the mask bytes are long literals,
|
|
// otherwise they'll default to ints, and when you shift an int left 56 bits,
|
|
// you just get a messed up int.
|
|
func (p *TCompactProtocol) bytesToUint64(b []byte) uint64 {
|
|
return binary.LittleEndian.Uint64(b)
|
|
}
|
|
|
|
//
|
|
// type testing and converting
|
|
//
|
|
|
|
func (p *TCompactProtocol) isBoolType(b byte) bool {
|
|
return (b&0x0f) == COMPACT_BOOLEAN_TRUE || (b&0x0f) == COMPACT_BOOLEAN_FALSE
|
|
}
|
|
|
|
// Given a tCompactType constant, convert it to its corresponding
|
|
// TType value.
|
|
func (p *TCompactProtocol) getTType(t tCompactType) (TType, error) {
|
|
switch byte(t) & 0x0f {
|
|
case STOP:
|
|
return STOP, nil
|
|
case COMPACT_BOOLEAN_FALSE, COMPACT_BOOLEAN_TRUE:
|
|
return BOOL, nil
|
|
case COMPACT_BYTE:
|
|
return BYTE, nil
|
|
case COMPACT_I16:
|
|
return I16, nil
|
|
case COMPACT_I32:
|
|
return I32, nil
|
|
case COMPACT_I64:
|
|
return I64, nil
|
|
case COMPACT_DOUBLE:
|
|
return DOUBLE, nil
|
|
case COMPACT_BINARY:
|
|
return STRING, nil
|
|
case COMPACT_LIST:
|
|
return LIST, nil
|
|
case COMPACT_SET:
|
|
return SET, nil
|
|
case COMPACT_MAP:
|
|
return MAP, nil
|
|
case COMPACT_STRUCT:
|
|
return STRUCT, nil
|
|
}
|
|
return STOP, TException(fmt.Errorf("don't know what type: %d", t&0x0f))
|
|
}
|
|
|
|
// Given a TType value, find the appropriate TCompactProtocol.Types constant.
|
|
func (p *TCompactProtocol) getCompactType(t TType) tCompactType {
|
|
return ttypeToCompactType[t]
|
|
}
|