Files
hummingbot-dashboard/utils/optuna_database_manager.py

298 lines
11 KiB
Python

import os
import json
import pandas as pd
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from utils.data_manipulation import StrategyData
class OptunaDBManager:
def __init__(self, db_name):
self.db_name = db_name
self.db_path = f'sqlite:///{os.path.join("data/backtesting", db_name)}'
self.engine = create_engine(self.db_path, connect_args={'check_same_thread': False})
self.session_maker = sessionmaker(bind=self.engine)
@property
def status(self):
try:
with self.session_maker() as session:
query = 'SELECT * FROM trials WHERE state = "COMPLETE"'
completed_trials = pd.read_sql_query(query, session.connection())
if len(completed_trials) > 0:
# TODO: improve error handling, think what to do with other cases
return "OK"
else:
return "No records found in the trials table with completed state"
except Exception as e:
return f"Error: {str(e)}"
@property
def tables(self):
return self._get_tables()
def _get_tables(self):
try:
with self.session_maker() as session:
query = "SELECT name FROM sqlite_master WHERE type='table';"
tables = pd.read_sql_query(query, session.connection())
return tables["name"].tolist()
except Exception as e:
return f"Error: {str(e)}"
@property
def trials(self):
return self._get_trials_table()
def _get_trials_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trials", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def studies(self):
return self._get_studies_table()
def _get_studies_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM studies", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def trial_params(self):
return self._get_trial_params_table()
def _get_trial_params_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trial_params", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def trial_values(self):
return self._get_trial_values_table()
def _get_trial_values_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trial_values", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def trial_system_attributes(self):
return self._get_trial_system_attributes_table()
def _get_trial_system_attributes_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trial_system_attributes", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def trial_system_attributes(self):
return self._get_trial_system_attributes_table()
def _get_trial_system_attributes_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trial_system_attributes", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def version_info(self):
return self._get_version_info_table()
def _get_version_info_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM version_info", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def study_directions(self):
return self._get_study_directions_table()
def _get_study_directions_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM study_directions", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def study_user_attributes(self):
return self._get_study_user_attributes_table()
def _get_study_user_attributes_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM study_user_attributes", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def study_system_attributes(self):
return self._get_study_system_attributes_table()
def _get_study_system_attributes_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM study_system_attributes", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def trial_user_attributes(self):
return self._get_trial_user_attributes_table()
def _get_trial_user_attributes_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trial_user_attributes", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def trial_intermediate_values(self):
return self._get_trial_intermediate_values_table()
def _get_trial_intermediate_values_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trial_intermediate_values", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def trial_heartbeats(self):
return self._get_trial_heartbeats_table()
def _get_trial_heartbeats_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM trial_heartbeats", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def alembic_version(self):
return self._get_alembic_version_table()
def _get_alembic_version_table(self):
try:
with self.session_maker() as session:
df = pd.read_sql_query("SELECT * FROM alembic_version", session.connection())
return df
except Exception as e:
return f"Error: {str(e)}"
@property
def merged_df(self):
return self._get_merged_df()
@staticmethod
def _add_hovertext(x):
summary_label = (f"<b>Trial ID: {x['trial_id']}</b><br>"
f"<b>Study: {x['study_name']}</b><br>"
f"--------------------<br>"
f"Accuracy: {100 * x['accuracy']:.2f} %<br>"
f"Avg Trading Time in Hours: {x['avg_trading_time_in_hours']:.2f}<br>"
f"Duration in Hours: {x['duration_in_hours']:.2f}<br>"
f"Loss Signals: {x['loss_signals']}<br>"
f"Max Drawdown [%]: {100 * x['max_drawdown_pct']:.2f} %<br>"
f"Max Drawdown [USD]: $ {x['max_drawdown_usd']:.2f}<br>"
f"Net Profit [%]: {100 * x['net_profit_pct']:.2f} %<br>"
f"Net Profit [$]: $ {x['net_profit_usd']:.2f}<br>"
f"Profit Factor: {x['profit_factor']:.2f}<br>"
f"Sharpe Ratio: {x['sharpe_ratio']:.4f}<br>"
f"Total Positions: {x['total_positions']}<br>"
f"Win Signals: {x['win_signals']}<br>"
f"Trial value: {x['value']}<br>"
f"Direction: {x['direction']}<br>"
)
return summary_label
def _get_merged_df(self):
float_cols = ["accuracy", "avg_trading_time_in_hours", "duration_in_hours", "max_drawdown_pct", "max_drawdown_usd",
"net_profit_pct", "net_profit_usd", "profit_factor", "sharpe_ratio", "value"]
int_cols = ["loss_signals", "total_positions", "win_signals"]
merged_df = self.trials\
.merge(self.studies, on="study_id")\
.merge(pd.pivot(self.trial_user_attributes, index="trial_id", columns="key", values="value_json"),
on="trial_id")\
.merge(self.trial_values, on="trial_id")\
.merge(self.study_directions, on="study_id")
merged_df[float_cols] = merged_df[float_cols].astype("float")
merged_df[int_cols] = merged_df[int_cols].astype("int64")
merged_df["hover_text"] = merged_df.apply(self._add_hovertext, axis=1)
return merged_df
def load_studies(self):
df = self.merged_df
study_name_col = 'study_name'
trial_id_col = 'trial_id'
nested_dict = {}
for _, row in df.iterrows():
study_name = row[study_name_col]
trial_id = row[trial_id_col]
data_dict = row.drop([study_name_col, trial_id_col]).to_dict()
if study_name not in nested_dict:
nested_dict[study_name] = {}
nested_dict[study_name][trial_id] = data_dict
return nested_dict
def load_params(self):
trial_id_col = 'trial_id'
param_name_col = 'param_name'
param_value_col = 'param_value'
distribution_json_col = 'distribution_json'
nested_dict = {}
for _, row in self.trial_params.iterrows():
trial_id = row[trial_id_col]
param_name = row[param_name_col]
param_value = row[param_value_col]
distribution_json = row[distribution_json_col]
if trial_id not in nested_dict:
nested_dict[trial_id] = {}
dist_json = json.loads(distribution_json)
default_step = None
default_low = None
default_high = None
default_log = None
nested_dict[trial_id][param_name] = {
'param_name': param_name,
'param_value': param_value,
'step': dist_json["attributes"].get("step", default_step),
'low': dist_json["attributes"].get("low", default_low),
'high': dist_json["attributes"].get("high", default_high),
'log': dist_json["attributes"].get("log", default_log),
}
return nested_dict