Files
hummingbot-dashboard/utils/graphs.py
2023-08-07 17:12:33 -03:00

342 lines
14 KiB
Python

import pandas as pd
from plotly.subplots import make_subplots
import pandas_ta as ta # noqa: F401
import streamlit as st
from utils.data_manipulation import StrategyData, SingleMarketStrategyData
from quants_lab.strategy.strategy_analysis import StrategyAnalysis
import plotly.graph_objs as go
class CandlesGraph:
def __init__(self, candles_df: pd.DataFrame, show_volume=True, extra_rows=1):
self.candles_df = candles_df
self.show_volume = show_volume
rows, heights = self.get_n_rows_and_heights(extra_rows)
self.rows = rows
specs = [[{"secondary_y": True}]] * rows
self.base_figure = make_subplots(rows=rows, cols=1, shared_xaxes=True, vertical_spacing=0.005,
row_heights=heights, specs=specs)
self.min_time = candles_df.reset_index().timestamp.min()
self.max_time = candles_df.reset_index().timestamp.max()
self.add_candles_graph()
if self.show_volume:
self.add_volume()
self.update_layout()
def get_n_rows_and_heights(self, extra_rows):
rows = 1 + extra_rows + self.show_volume
row_heights = [0.4] * (extra_rows)
if self.show_volume:
row_heights.insert(0, 0.05)
row_heights.insert(0, 0.8)
return rows, row_heights
def figure(self):
return self.base_figure
def add_candles_graph(self):
self.base_figure.add_trace(
go.Candlestick(
x=self.candles_df.index,
open=self.candles_df['open'],
high=self.candles_df['high'],
low=self.candles_df['low'],
close=self.candles_df['close'],
name="OHLC"
),
row=1, col=1,
)
def add_buy_trades(self, orders_data: pd.DataFrame):
self.base_figure.add_trace(
go.Scatter(
x=orders_data['timestamp'],
y=orders_data['price'],
name='Buy Orders',
mode='markers',
marker=dict(
symbol='triangle-up',
color='green',
size=12,
line=dict(color='black', width=1),
opacity=0.7,
)),
row=1, col=1,
)
def add_sell_trades(self, orders_data: pd.DataFrame):
self.base_figure.add_trace(
go.Scatter(
x=orders_data['timestamp'],
y=orders_data['price'],
name='Sell Orders',
mode='markers',
marker=dict(symbol='triangle-down',
color='red',
size=12,
line=dict(color='black', width=1),
opacity=0.7, )),
row=1, col=1,
)
def add_bollinger_bands(self, length=20, std=2.0, row=1):
df = self.candles_df.copy()
if len(df) < length:
st.warning("Not enough data to calculate Bollinger Bands")
return
df.ta.bbands(length=length, std=std, append=True)
self.base_figure.add_trace(
go.Scatter(
x=df.index,
y=df[f'BBU_{length}_{std}'],
name='Bollinger Bands',
mode='lines',
line=dict(color='blue', width=1)),
row=row, col=1,
)
self.base_figure.add_trace(
go.Scatter(
x=df.index,
y=df[f'BBM_{length}_{std}'],
name='Bollinger Bands',
mode='lines',
line=dict(color='blue', width=1)),
row=1, col=1,
)
self.base_figure.add_trace(
go.Scatter(
x=df.index,
y=df[f'BBL_{length}_{std}'],
name='Bollinger Bands',
mode='lines',
line=dict(color='blue', width=1)),
row=1, col=1,
)
def add_volume(self):
self.base_figure.add_trace(
go.Bar(
x=self.candles_df.index,
y=self.candles_df['volume'],
name="Volume",
opacity=0.5,
marker=dict(color='lightgreen'),
),
row=2, col=1,
)
def add_ema(self, length=20, row=1):
df = self.candles_df.copy()
if len(df) < length:
st.warning("Not enough data to calculate EMA")
return
df.ta.ema(length=length, append=True)
self.base_figure.add_trace(
go.Scatter(
x=df.index,
y=df[f'EMA_{length}'],
name='EMA',
mode='lines',
line=dict(color='yellow', width=1)),
row=row, col=1,
)
def add_base_inventory_change(self, strategy_data: StrategyData, row=3):
# Create a list of colors based on the sign of the amount_new column
self.base_figure.add_trace(
go.Bar(
x=strategy_data.trade_fill["timestamp"],
y=strategy_data.trade_fill["net_amount"],
name="Base Inventory Change",
opacity=0.5,
marker=dict(color=["lightgreen" if amount > 0 else "indianred" for amount in
strategy_data.trade_fill["net_amount"]])
),
row=row, col=1,
)
# TODO: Review impact in different subgraphs
merged_df = self.get_merged_df(strategy_data)
self.base_figure.add_trace(
go.Scatter(
x=merged_df.index,
y=merged_df["cum_net_amount"],
name="Cumulative Base Inventory Change",
mode="lines+markers",
marker=dict(color="black", size=6),
line=dict(color="royalblue", width=2),
# text=merged_df["cum_net_amount"],
# textposition="top center",
# texttemplate="%{text:.2f}"
),
row=row, col=1
)
self.base_figure.update_yaxes(title_text='Base Inventory Change', row=row, col=1)
def add_pnl(self, strategy_data: SingleMarketStrategyData, row=4):
merged_df = self.get_merged_df(strategy_data)
self.base_figure.add_trace(
go.Scatter(
x=merged_df.index,
y=merged_df["cum_fees_in_quote"].apply(lambda x: round(-x, 2)),
name="Cum Fees",
mode='lines',
line_color='teal',
fill="tozeroy", # Fill to the line below (trade pnl)
stackgroup='one'
),
row=row, col=1
)
self.base_figure.add_trace(
go.Scatter(
x=merged_df.index,
y=merged_df["trade_pnl_continuos"].apply(lambda x: round(x, 2)),
name="Cum Trade PnL",
mode='lines',
line_color='pink',
fill="tonexty", # Fill to the line below (net pnl)
stackgroup='one'
),
row=row, col=1
)
self.base_figure.add_trace(
go.Scatter(
x=merged_df.index,
y=merged_df["net_pnl_continuos"].apply(lambda x: round(x, 2)),
name="Cum Net PnL",
mode="lines+markers",
marker=dict(color="black", size=6),
line=dict(color="black", width=2),
# textposition="top center",
# text=merged_df["net_pnl_continuos"],
# texttemplate="%{text:.1f}"
),
row=row, col=1
)
self.base_figure.update_yaxes(title_text='PNL', row=row, col=1)
def update_layout(self):
self.base_figure.update_layout(
title={
'text': "Market activity",
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="right",
x=1
),
height=1500,
xaxis=dict(rangeslider_visible=False,
range=[self.min_time, self.max_time]),
yaxis=dict(range=[self.candles_df.low.min(), self.candles_df.high.max()]),
hovermode='x unified'
)
self.base_figure.update_yaxes(title_text="Price", row=1, col=1)
if self.show_volume:
self.base_figure.update_yaxes(title_text="Volume", row=2, col=1)
self.base_figure.update_xaxes(title_text="Time", row=self.rows, col=1)
def get_merged_df(self, strategy_data: StrategyData):
merged_df = pd.merge_asof(self.candles_df, strategy_data.trade_fill, left_index=True, right_on="timestamp", direction="backward")
merged_df["trade_pnl_continuos"] = merged_df["unrealized_trade_pnl"] + merged_df["cum_net_amount"] * merged_df["close"]
merged_df["net_pnl_continuos"] = merged_df["trade_pnl_continuos"] - merged_df["cum_fees_in_quote"]
return merged_df
class BacktestingGraphs:
def __init__(self, study_df: pd.DataFrame):
self.study_df = study_df
def pnl_vs_maxdrawdown(self):
fig = go.Figure()
fig.add_trace(go.Scatter(name="Pnl vs Max Drawdown",
x=-100 * self.study_df["max_drawdown_pct"],
y=100 * self.study_df["net_profit_pct"],
mode="markers",
text=None,
hovertext=self.study_df["hover_text"]))
fig.update_layout(
title="PnL vs Max Drawdown",
xaxis_title="Max Drawdown [%]",
yaxis_title="Net Profit [%]",
height=800
)
fig.data[0].text = []
return fig
@staticmethod
def get_trial_metrics(strategy_analysis: StrategyAnalysis):
"""Isolated method because it needs to be called from analyze and simulate pages"""
metrics_container = st.container()
with metrics_container:
col1, col2 = st.columns(2)
with col1:
st.subheader("🏦 Market")
with col2:
st.subheader("📋 General stats")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Exchange", st.session_state["strategy_params"]["exchange"])
with col2:
st.metric("Trading Pair", st.session_state["strategy_params"]["trading_pair"])
with col3:
st.metric("Start date", strategy_analysis.start_date().strftime("%Y-%m-%d %H:%M"))
st.metric("End date", strategy_analysis.end_date().strftime("%Y-%m-%d %H:%M"))
with col4:
st.metric("Duration (hours)", f"{strategy_analysis.duration_in_minutes() / 60:.2f}")
st.metric("Price change", st.session_state["strategy_params"]["trading_pair"])
st.subheader("📈 Performance")
col1, col2, col3, col4, col5, col6, col7, col8 = st.columns(8)
with col1:
st.metric("Net PnL USD",
f"{strategy_analysis.net_profit_usd():.2f}",
delta=f"{100 * strategy_analysis.net_profit_pct():.2f}%",
help="The overall profit or loss achieved.")
with col2:
st.metric("Total positions",
f"{strategy_analysis.total_positions()}",
help="The total number of closed trades, winning and losing.")
with col3:
st.metric("Accuracy",
f"{100 * (len(strategy_analysis.win_signals()) / strategy_analysis.total_positions()):.2f} %",
help="The percentage of winning trades, the number of winning trades divided by the"
" total number of closed trades")
with col4:
st.metric("Profit factor",
f"{strategy_analysis.profit_factor():.2f}",
help="The amount of money the strategy made for every unit of money it lost, "
"gross profits divided by gross losses.")
with col5:
st.metric("Max Drawdown",
f"{strategy_analysis.max_drawdown_usd():.2f}",
delta=f"{100 * strategy_analysis.max_drawdown_pct():.2f}%",
help="The greatest loss drawdown, i.e., the greatest possible loss the strategy had compared "
"to its highest profits")
with col6:
st.metric("Avg Profit",
f"{strategy_analysis.avg_profit():.2f}",
help="The sum of money gained or lost by the average trade, Net Profit divided by "
"the overall number of closed trades.")
with col7:
st.metric("Avg Minutes",
f"{strategy_analysis.avg_trading_time_in_minutes():.2f}",
help="The average number of minutes that elapsed during trades for all closed trades.")
with col8:
st.metric("Sharpe Ratio",
f"{strategy_analysis.sharpe_ratio():.2f}",
help="The Sharpe ratio is a measure that quantifies the risk-adjusted return of an investment"
" or portfolio. It compares the excess return earned above a risk-free rate per unit of"
" risk taken.")
st.plotly_chart(strategy_analysis.pnl_over_time(), use_container_width=True)
strategy_analysis.create_base_figure(volume=add_volume, positions=add_positions, trade_pnl=add_pnl)
st.plotly_chart(strategy_analysis.figure(), use_container_width=True)
return metrics_container