Files
hummingbot-dashboard/quants_lab/strategy/experiments/stat_arb.py
2023-07-20 21:37:42 +02:00

48 lines
1.8 KiB
Python

import pandas as pd
import pandas_ta as ta
from pydantic import BaseModel, Field
from quants_lab.strategy.directional_strategy_base import DirectionalStrategyBase
class StatArbConfig(BaseModel):
exchange: str = Field(default="binance_perpetual")
trading_pair: str = Field(default="ETH-USDT")
target_trading_pair: str = Field(default="BTC-USDT")
interval: str = Field(default="1h")
lookback: int = Field(default=100, ge=2, le=10000)
z_score_long: float = Field(default=2, ge=0, le=5)
z_score_short: float = Field(default=-2, ge=-5, le=0)
class StatArb(DirectionalStrategyBase[StatArbConfig]):
def get_raw_data(self):
df = self.get_candles(
exchange=self.config.exchange,
trading_pair=self.config.trading_pair,
interval=self.config.interval,
)
df_target = self.get_candles(
exchange=self.config.exchange,
trading_pair=self.config.target_trading_pair,
interval=self.config.interval,
)
df = pd.merge(df, df_target, on="timestamp", how='inner', suffixes=('', '_target'))
return df
def preprocessing(self, df):
df["pct_change_original"] = df["close"].pct_change()
df["pct_change_target"] = df["close_target"].pct_change()
df["spread"] = df["pct_change_target"] - df["pct_change_original"]
df["cum_spread"] = df["spread"].rolling(self.config.lookback).sum()
df["z_score"] = ta.zscore(df["cum_spread"], length=self.config.lookback)
return df
def predict(self, df):
df["side"] = 0
short_condition = df["z_score"] < - self.config.z_score_short
long_condition = df["z_score"] > self.config.z_score_long
df.loc[long_condition, "side"] = 1
df.loc[short_condition, "side"] = -1
return df