Files
hummingbot-dashboard/pages/backtest_manager/analyze.py
2023-08-07 17:47:46 -03:00

157 lines
7.5 KiB
Python

import constants
import os
import json
import streamlit as st
from quants_lab.strategy.strategy_analysis import StrategyAnalysis
from utils.graphs import BacktestingGraphs
from utils.optuna_database_manager import OptunaDBManager
from utils.os_utils import load_directional_strategies
from utils.st_utils import initialize_st_page
initialize_st_page(title="Analyze", icon="🔬", initial_sidebar_state="collapsed")
@st.cache_resource
def get_databases():
sqlite_files = [db_name for db_name in os.listdir("data/backtesting") if db_name.endswith(".db")]
databases_list = [OptunaDBManager(db) for db in sqlite_files]
databases_dict = {database.db_name: database for database in databases_list}
return [x.db_name for x in databases_dict.values() if x.status == 'OK']
def initialize_session_state_vars():
if "strategy_params" not in st.session_state:
st.session_state.strategy_params = {}
if "backtesting_params" not in st.session_state:
st.session_state.backtesting_params = {}
initialize_session_state_vars()
dbs = get_databases()
if not dbs:
st.warning("We couldn't find any Optuna database.")
selected_db_name = None
selected_db = None
else:
# Select database from selectbox
selected_db = st.selectbox("Select your database:", dbs)
# Instantiate database manager
opt_db = OptunaDBManager(selected_db)
# Load studies
studies = opt_db.load_studies()
# Choose study
study_selected = st.selectbox("Select a study:", studies.keys())
# Filter trials from selected study
merged_df = opt_db.merged_df[opt_db.merged_df["study_name"] == study_selected]
bt_graphs = BacktestingGraphs(merged_df)
# Show and compare all of the study trials
st.plotly_chart(bt_graphs.pnl_vs_maxdrawdown(), use_container_width=True)
# Get study trials
trials = studies[study_selected]
# Choose trial
trial_selected = st.selectbox("Select a trial to backtest", list(trials.keys()))
trial = trials[trial_selected]
# Transform trial config in a dictionary
trial_config = json.loads(trial["config"])
# Strategy parameters section
st.write("## Strategy parameters")
# Load strategies (class, config, module)
strategies = load_directional_strategies(constants.DIRECTIONAL_STRATEGIES_PATH)
# Select strategy
strategy = strategies[trial_config["name"]]
# Get field schema
field_schema = strategy["config"].schema()["properties"]
c1, c2 = st.columns([5, 1])
# Render every field according to schema
with c1:
columns = st.columns(4)
column_index = 0
for field_name, properties in field_schema.items():
field_type = properties["type"]
field_value = trial_config[field_name]
with columns[column_index]:
if field_type in ["number", "integer"]:
field_value = st.number_input(field_name,
value=field_value,
min_value=properties.get("minimum"),
max_value=properties.get("maximum"),
key=field_name)
elif field_type == "string":
field_value = st.text_input(field_name, value=field_value)
elif field_type == "boolean":
# TODO: Add support for boolean fields in optimize tab
field_value = st.checkbox(field_name, value=field_value)
else:
raise ValueError(f"Field type {field_type} not supported")
try:
st.session_state["strategy_params"][field_name] = field_value
except KeyError as e:
pass
column_index = (column_index + 1) % 4
with c2:
add_positions = st.checkbox("Add positions", value=True)
add_volume = st.checkbox("Add volume", value=True)
add_pnl = st.checkbox("Add PnL", value=True)
# Backtesting parameters section
st.write("## Backtesting parameters")
# Get every trial params
# TODO: Filter only from selected study
backtesting_configs = opt_db.load_params()
# Get trial backtesting params
backtesting_params = backtesting_configs[trial_selected]
col1, col2, col3 = st.columns(3)
with col1:
selected_order_amount = st.number_input("Order amount",
value=50.0,
min_value=0.1,
max_value=999999999.99)
selected_leverage = st.number_input("Leverage",
value=10,
min_value=1,
max_value=200)
with col2:
selected_initial_portfolio = st.number_input("Initial portfolio",
value=10000.00,
min_value=1.00,
max_value=999999999.99)
selected_time_limit = st.number_input("Time Limit",
value=60 * 60 * backtesting_params["time_limit"]["param_value"],
min_value=60 * 60 * float(backtesting_params["time_limit"]["low"]),
max_value=60 * 60 * float(backtesting_params["time_limit"]["high"]))
with col3:
selected_tp_multiplier = st.number_input("Take Profit Multiplier",
value=backtesting_params["take_profit_multiplier"]["param_value"],
min_value=backtesting_params["take_profit_multiplier"]["low"],
max_value=backtesting_params["take_profit_multiplier"]["high"])
selected_sl_multiplier = st.number_input("Stop Loss Multiplier",
value=backtesting_params["stop_loss_multiplier"]["param_value"],
min_value=backtesting_params["stop_loss_multiplier"]["low"],
max_value=backtesting_params["stop_loss_multiplier"]["high"])
if st.button("Run Backtesting!"):
config = strategy["config"](**st.session_state["strategy_params"])
strategy = strategy["class"](config=config)
try:
market_data, positions = strategy.run_backtesting(
order_amount=selected_order_amount,
leverage=selected_order_amount,
initial_portfolio=selected_initial_portfolio,
take_profit_multiplier=selected_tp_multiplier,
stop_loss_multiplier=selected_sl_multiplier,
time_limit=selected_time_limit,
std_span=None,
)
strategy_analysis = StrategyAnalysis(
positions=positions,
candles_df=market_data,
)
metrics_container = bt_graphs.get_trial_metrics(strategy_analysis,
add_positions=add_positions,
add_volume=add_volume,
add_pnl=add_pnl)
except FileNotFoundError:
st.warning(f"The requested candles could not be found.")