Files
hummingbot-dashboard/utils/data_manipulation.py
2023-04-24 20:00:21 -03:00

139 lines
4.6 KiB
Python

import datetime
from dataclasses import dataclass
import pandas as pd
@dataclass
class StrategyData:
orders: pd.DataFrame
order_status: pd.DataFrame
trade_fill: pd.DataFrame
config_file_name: str
def __post_init__(self):
self.trade_fill["net_amount"] = self.trade_fill['amount'] * self.trade_fill['trade_type'].apply(lambda x: 1 if x == 'BUY' else -1)
self.trade_fill["net_amount_quote"] = self.trade_fill['net_amount'] * self.trade_fill['price']
self.trade_fill["cum_net_amount"] = self.trade_fill["net_amount"].cumsum()
self.trade_fill["unrealized_trade_pnl"] = -1 * self.trade_fill["net_amount_quote"].cumsum()
self.trade_fill["inventory_cost"] = self.trade_fill["cum_net_amount"] * self.trade_fill["price"]
self.trade_fill["realized_trade_pnl"] = self.trade_fill["unrealized_trade_pnl"] + self.trade_fill["inventory_cost"]
def get_filtered_strategy_data(self, start_time: datetime.datetime, end_time: datetime.datetime):
trade_fill = self.trade_fill[(self.trade_fill["timestamp"] >= start_time) & (self.trade_fill["timestamp"] <= end_time)]
order_status = self.order_status[self.order_status["order_id"].isin(trade_fill["order_id"])].copy()
orders = self.orders[self.orders["id"].isin(trade_fill["order_id"])].copy()
return StrategyData(
orders=orders,
order_status=order_status,
trade_fill=trade_fill,
config_file_name=self.config_file_name
)
@property
def market(self):
return self.trade_fill["market"].unique()[0].split("_")[0]
@property
def symbol(self):
return self.trade_fill["symbol"].unique()[0]
@property
def start_time(self):
return self.orders["creation_timestamp"].min()
@property
def end_time(self):
return self.orders["last_update_timestamp"].max()
@property
def duration_minutes(self):
return (self.end_time - self.start_time).seconds / 60
@property
def start_price(self):
return self.trade_fill["price"].iat[0]
@property
def end_price(self):
return self.trade_fill["price"].iat[-1]
@property
def buys(self):
return self.trade_fill[self.trade_fill["trade_type"] == "BUY"]
@property
def sells(self):
return self.trade_fill[self.trade_fill["trade_type"] == "SELL"]
@property
def total_buy_amount(self):
return self.buys["amount"].sum()
@property
def total_sell_amount(self):
return self.sells["amount"].sum()
@property
def total_buy_trades(self):
return self.buys["amount"].count()
@property
def total_sell_trades(self):
return self.sells["amount"].count()
@property
def trade_pnl_usd(self):
# TODO: Review logic
buy_volume = self.buys["amount"].sum() * self.average_buy_price
sell_volume = self.sells["amount"].sum() * self.average_sell_price
inventory_change_volume = self.inventory_change_base_asset * self.end_price
return sell_volume - buy_volume + inventory_change_volume
@property
def inventory_change_base_asset(self):
return self.total_buy_amount - self.total_sell_amount
@property
def total_orders(self):
return self.total_buy_trades + self.total_sell_trades
@property
def average_buy_price(self):
average_price = (self.buys["price"] * self.buys["amount"]).sum() / self.total_buy_amount
return average_price
@property
def average_sell_price(self):
average_price = (self.sells["price"] * self.sells["amount"]).sum() / self.total_sell_amount
return average_price
@property
def price_change(self):
return (self.end_price - self.start_price) / self.start_price
@dataclass
class BotData:
orders: pd.DataFrame
order_status: pd.DataFrame
trade_fill: pd.DataFrame
def get_strategy_data(self, config_file_name: str):
orders_filtered = self.orders[self.orders["config_file_path"] == config_file_name].copy()
order_status_filtered = self.order_status[
self.order_status["order_id"].isin(orders_filtered["id"])].copy()
trade_fill_filtered = self.trade_fill[self.trade_fill["config_file_path"] == config_file_name].copy()
return StrategyData(orders_filtered, order_status_filtered, trade_fill_filtered, config_file_name)
@property
def start_time(self):
return self.orders["creation_timestamp"].min()
@property
def end_time(self):
return self.orders["last_update_timestamp"].max()
@property
def duration_minutes(self):
return (self.end_time - self.start_time).seconds / 60