Files
hummingbot-dashboard/utils/file_templates.py
2023-08-04 15:11:17 +02:00

120 lines
4.9 KiB
Python

from typing import Dict
def directional_strategy_template(strategy_cls_name: str) -> str:
strategy_config_cls_name = f"{strategy_cls_name}Config"
sma_config_text = "{self.config.sma_length}"
return f"""import pandas_ta as ta
from pydantic import BaseModel, Field
from quants_lab.strategy.directional_strategy_base import DirectionalStrategyBase
class {strategy_config_cls_name}(BaseModel):
exchange: str = Field(default="binance_perpetual")
trading_pair: str = Field(default="ETH-USDT")
interval: str = Field(default="1h")
sma_length: int = Field(default=20, ge=10, le=200)
# ... Add more fields here
class {strategy_cls_name}(DirectionalStrategyBase[{strategy_config_cls_name}]):
def get_raw_data(self):
# The method get candles will search for the data in the folder data/candles
# If the data is not there, you can use the candles downloader to get the data
df = self.get_candles(
exchange=self.config.exchange,
trading_pair=self.config.trading_pair,
interval=self.config.interval,
)
return df
def preprocessing(self, df):
df.ta.sma(length=self.config.sma_length, append=True)
# ... Add more indicators here
# ... Check https://github.com/twopirllc/pandas-ta#indicators-by-category for more indicators
# ... Use help(ta.indicator_name) to get more info
return df
def predict(self, df):
# Generate long and short conditions
long_cond = (df['close'] > df[f'SMA_{sma_config_text}'])
short_cond = (df['close'] < df[f'SMA_{sma_config_text}'])
# Choose side
df['side'] = 0
df.loc[long_cond, 'side'] = 1
df.loc[short_cond, 'side'] = -1
return df
"""
def get_optuna_suggest_str(field_name: str, properties: Dict):
map_by_type = {
"number": "trial.suggest_float",
"integer": "trial.suggest_int",
"string": "trial.suggest_categorical",
}
config_num = f"('{field_name}', {properties.get('minimum', '_')}, {properties.get('maximum', '_')})"
config_cat = f"('{field_name}', ['{properties.get('default', '_')}',])"
optuna_trial_str = map_by_type[properties["type"]] + config_num if properties["type"] != "string" \
else map_by_type[properties["type"]] + config_cat
return f"{field_name}={optuna_trial_str}"
def strategy_optimization_template(strategy_info: dict):
strategy_cls = strategy_info["class"]
strategy_config = strategy_info["config"]
strategy_module = strategy_info["module"]
field_schema = strategy_config.schema()["properties"]
fields_str = [get_optuna_suggest_str(field_name, properties) for field_name, properties in field_schema.items()]
fields_str = "".join([f" {field_str},\n" for field_str in fields_str])
return f"""import traceback
from optuna import TrialPruned
from quants_lab.strategy.experiments.{strategy_module} import {strategy_cls.__name__}, {strategy_config.__name__}
from quants_lab.strategy.strategy_analysis import StrategyAnalysis
def objective(trial):
try:
config = {strategy_config.__name__}(
{fields_str}
)
strategy = {strategy_cls.__name__}(config=config)
market_data, positions = strategy.run_backtesting(
start='2021-04-01',
order_amount=50,
leverage=20,
initial_portfolio=100,
take_profit_multiplier=trial.suggest_float("take_profit_multiplier", 1.0, 3.0),
stop_loss_multiplier=trial.suggest_float("stop_loss_multiplier", 1.0, 3.0),
time_limit=60 * 60 * trial.suggest_int("time_limit", 1, 24),
std_span=None,
)
strategy_analysis = StrategyAnalysis(
positions=positions,
)
trial.set_user_attr("net_profit_usd", strategy_analysis.net_profit_usd())
trial.set_user_attr("net_profit_pct", strategy_analysis.net_profit_pct())
trial.set_user_attr("max_drawdown_usd", strategy_analysis.max_drawdown_usd())
trial.set_user_attr("max_drawdown_pct", strategy_analysis.max_drawdown_pct())
trial.set_user_attr("sharpe_ratio", strategy_analysis.sharpe_ratio())
trial.set_user_attr("accuracy", strategy_analysis.accuracy())
trial.set_user_attr("total_positions", strategy_analysis.total_positions())
trial.set_user_attr("win_signals", strategy_analysis.win_signals().shape[0])
trial.set_user_attr("loss_signals", strategy_analysis.loss_signals().shape[0])
trial.set_user_attr("profit_factor", strategy_analysis.profit_factor())
trial.set_user_attr("duration_in_hours", strategy_analysis.duration_in_minutes() / 60)
trial.set_user_attr("avg_trading_time_in_hours", strategy_analysis.avg_trading_time_in_minutes() / 60)
trial.set_user_attr("config", config.dict())
return strategy_analysis.net_profit_pct()
except Exception as e:
traceback.print_exc()
raise TrialPruned()
"""