mirror of
https://github.com/aljazceru/hummingbot-dashboard.git
synced 2025-12-28 18:54:22 +01:00
258 lines
9.0 KiB
Python
258 lines
9.0 KiB
Python
import pandas as pd
|
|
from plotly.subplots import make_subplots
|
|
import pandas_ta as ta # noqa: F401
|
|
import streamlit as st
|
|
|
|
from utils.data_manipulation import StrategyData
|
|
import plotly.graph_objs as go
|
|
|
|
|
|
class CandlesGraph:
|
|
def __init__(self, candles_df: pd.DataFrame, show_volume=True, extra_rows=1):
|
|
self.candles_df = candles_df
|
|
self.show_volume = show_volume
|
|
rows, heights = self.get_n_rows_and_heights(extra_rows)
|
|
self.rows = rows
|
|
specs = [[{"secondary_y": True}]] * rows
|
|
self.base_figure = make_subplots(rows=rows, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=heights, specs=specs)
|
|
self.add_candles_graph()
|
|
if self.show_volume:
|
|
self.add_volume()
|
|
self.update_layout()
|
|
|
|
def get_n_rows_and_heights(self, extra_rows):
|
|
rows = 1 + extra_rows + self.show_volume
|
|
row_heights = [0.3] * (extra_rows)
|
|
if self.show_volume:
|
|
row_heights.insert(0, 0.2)
|
|
row_heights.insert(0, 0.8)
|
|
return rows, row_heights
|
|
|
|
def figure(self):
|
|
return self.base_figure
|
|
|
|
def add_candles_graph(self):
|
|
self.base_figure.add_trace(
|
|
go.Candlestick(
|
|
x=self.candles_df['datetime'],
|
|
open=self.candles_df['open'],
|
|
high=self.candles_df['high'],
|
|
low=self.candles_df['low'],
|
|
close=self.candles_df['close'],
|
|
name="OHLC"
|
|
),
|
|
row=1, col=1,
|
|
)
|
|
|
|
def add_buy_trades(self, orders_data: pd.DataFrame):
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=orders_data['timestamp'],
|
|
y=orders_data['price'],
|
|
name='Buy Orders',
|
|
mode='markers',
|
|
marker=dict(
|
|
symbol='triangle-up',
|
|
color='green',
|
|
size=12,
|
|
line=dict(color='black', width=1),
|
|
opacity=0.7,
|
|
)),
|
|
row=1, col=1,
|
|
)
|
|
|
|
def add_sell_trades(self, orders_data: pd.DataFrame):
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=orders_data['timestamp'],
|
|
y=orders_data['price'],
|
|
name='Sell Orders',
|
|
mode='markers',
|
|
marker=dict(symbol='triangle-down',
|
|
color='red',
|
|
size=12,
|
|
line=dict(color='black', width=1),
|
|
opacity=0.7,)),
|
|
row=1, col=1,
|
|
)
|
|
|
|
def add_bollinger_bands(self, length=20, std=2.0, row=1):
|
|
df = self.candles_df.copy()
|
|
if len(df) < length:
|
|
st.warning("Not enough data to calculate Bollinger Bands")
|
|
return
|
|
df.ta.bbands(length=length, std=std, append=True)
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=df['datetime'],
|
|
y=df[f'BBU_{length}_{std}'],
|
|
name='Bollinger Bands',
|
|
mode='lines',
|
|
line=dict(color='blue', width=1)),
|
|
row=row, col=1,
|
|
)
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=df['datetime'],
|
|
y=df[f'BBM_{length}_{std}'],
|
|
name='Bollinger Bands',
|
|
mode='lines',
|
|
line=dict(color='blue', width=1)),
|
|
row=1, col=1,
|
|
)
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=df['datetime'],
|
|
y=df[f'BBL_{length}_{std}'],
|
|
name='Bollinger Bands',
|
|
mode='lines',
|
|
line=dict(color='blue', width=1)),
|
|
row=1, col=1,
|
|
)
|
|
|
|
def add_volume(self):
|
|
self.base_figure.add_trace(
|
|
go.Bar(
|
|
x=self.candles_df['datetime'],
|
|
y=self.candles_df['volume'],
|
|
name="Volume",
|
|
opacity=0.5,
|
|
marker=dict(color='lightgreen')
|
|
),
|
|
row=2, col=1,
|
|
)
|
|
|
|
def add_ema(self, length=20, row=1):
|
|
df = self.candles_df.copy()
|
|
if len(df) < length:
|
|
st.warning("Not enough data to calculate EMA")
|
|
return
|
|
df.ta.ema(length=length, append=True)
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=df['datetime'],
|
|
y=df[f'EMA_{length}'],
|
|
name='EMA',
|
|
mode='lines',
|
|
line=dict(color='yellow', width=1)),
|
|
row=row, col=1,
|
|
)
|
|
|
|
def add_base_inventory_change(self, strategy_data: StrategyData, row=3):
|
|
# Create a list of colors based on the sign of the amount_new column
|
|
self.base_figure.add_trace(
|
|
go.Bar(
|
|
x=strategy_data.trade_fill["timestamp"],
|
|
y=strategy_data.trade_fill["net_amount"],
|
|
name="Base Inventory Change",
|
|
opacity=0.5,
|
|
marker=dict(color=["lightgreen" if amount > 0 else "indianred" for amount in strategy_data.trade_fill["net_amount"]])
|
|
),
|
|
row=row, col=1,
|
|
)
|
|
# TODO: Review impact in different subgraphs
|
|
merged_df = pd.merge_asof(self.candles_df, strategy_data.trade_fill, left_on="datetime", right_on="timestamp", direction="forward")
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=merged_df.datetime,
|
|
y=merged_df["cum_net_amount"],
|
|
name="Cumulative Base Inventory Change",
|
|
mode='lines',
|
|
line=dict(color='black', width=1)),
|
|
row=row, col=1, secondary_y=True
|
|
)
|
|
self.base_figure.update_yaxes(title_text='Cum Base Inventory Change', row=3, col=1, secondary_y=True)
|
|
self.base_figure.update_yaxes(title_text='Base Inventory Change', row=3, col=1)
|
|
|
|
def add_trade_pnl(self, strategy_data: StrategyData, row=4):
|
|
merged_df = pd.merge_asof(self.candles_df, strategy_data.trade_fill, left_on="datetime", right_on="timestamp", direction="nearest")
|
|
merged_df["trade_pnl_continuos"] = merged_df["unrealized_trade_pnl"] + merged_df["cum_net_amount"] * merged_df["close"]
|
|
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=merged_df.datetime,
|
|
y=merged_df["trade_pnl_continuos"],
|
|
name="Cumulative Trade PnL Continuos",
|
|
mode='lines',
|
|
line=dict(color='chocolate', width=2)),
|
|
row=row, col=1
|
|
)
|
|
self.base_figure.add_trace(
|
|
go.Scatter(
|
|
x=merged_df.datetime,
|
|
y=merged_df["realized_trade_pnl"],
|
|
name="Cumulative Trade PnL by Trade",
|
|
mode='lines',
|
|
line=dict(color='cornflowerblue', width=2)),
|
|
row=row, col=1
|
|
)
|
|
self.base_figure.update_yaxes(title_text='Cum Trade PnL', row=4, col=1)
|
|
|
|
def update_layout(self):
|
|
self.base_figure.update_layout(
|
|
title={
|
|
'text': "Market activity",
|
|
'y': 0.95,
|
|
'x': 0.5,
|
|
'xanchor': 'center',
|
|
'yanchor': 'top'
|
|
},
|
|
legend=dict(
|
|
orientation="h",
|
|
yanchor="bottom",
|
|
y=-0.2,
|
|
xanchor="right",
|
|
x=1
|
|
),
|
|
height=1000,
|
|
xaxis_rangeslider_visible=False,
|
|
hovermode='x unified'
|
|
)
|
|
self.base_figure.update_yaxes(title_text="Price", row=1, col=1)
|
|
if self.show_volume:
|
|
self.base_figure.update_yaxes(title_text="Volume", row=2, col=1)
|
|
self.base_figure.update_xaxes(title_text="Time", row=self.rows, col=1)
|
|
|
|
|
|
def get_bar_plot_volume_of_trades(strategy_data: StrategyData):
|
|
grouped_df = strategy_data.trade_fill.groupby("trade_type").agg({"amount": "sum", "order_id": "count"})
|
|
# Create figure with secondary y-axis
|
|
fig = go.Figure()
|
|
fig.add_trace(go.Bar(
|
|
y=['Total Amount'],
|
|
x=grouped_df.loc["BUY", ["amount"]],
|
|
name='Buy Amount',
|
|
orientation='h',
|
|
|
|
))
|
|
fig.add_trace(go.Bar(
|
|
y=['Total Amount'],
|
|
x=grouped_df.loc["SELL", ["amount"]],
|
|
name='Sell Amount',
|
|
orientation='h',
|
|
))
|
|
fig.update_layout(template="plotly_white", title="Volume analysis", height=300,
|
|
xaxis_title="Amount in Base Asset")
|
|
return fig
|
|
|
|
|
|
def get_bar_plot_quantity_of_trades(strategy_data: StrategyData):
|
|
grouped_df = strategy_data.trade_fill.groupby("trade_type").agg({"amount": "sum", "order_id": "count"})
|
|
|
|
fig = go.Figure()
|
|
fig.add_trace(go.Bar(
|
|
y=['Quantity of Orders'],
|
|
x=grouped_df.loc["BUY", ["order_id"]],
|
|
name='Quantity of Buys',
|
|
orientation='h',
|
|
|
|
))
|
|
fig.add_trace(go.Bar(
|
|
y=['Quantity of Orders'],
|
|
x=grouped_df.loc["SELL", ["order_id"]],
|
|
name='Quantity of Sells',
|
|
orientation='h',
|
|
))
|
|
fig.update_layout(template="plotly_white", title="Excution Analysis", height=300,
|
|
xaxis_title="Quantity of orders")
|
|
return fig |