Files
hummingbot-dashboard/utils/data_manipulation.py

157 lines
4.6 KiB
Python

import datetime
from dataclasses import dataclass
import pandas as pd
@dataclass
class StrategyData:
orders: pd.DataFrame
order_status: pd.DataFrame
trade_fill: pd.DataFrame
def get_single_market_strategy_data(self, exchange: str, trading_pair: str):
orders = self.orders[(self.orders["market"] == exchange) & (self.orders["symbol"] == trading_pair)].copy()
trade_fill = self.trade_fill[self.trade_fill["order_id"].isin(orders["id"])].copy()
order_status = self.order_status[self.order_status["order_id"].isin(orders["id"])].copy()
return SingleMarketStrategyData(
exchange=exchange,
trading_pair=trading_pair,
orders=orders,
order_status=order_status,
trade_fill=trade_fill,
)
@property
def exchanges(self):
return self.trade_fill["market"].unique()
@property
def trading_pairs(self):
return self.trade_fill["symbol"].unique()
@property
def start_time(self):
return self.orders["creation_timestamp"].min()
@property
def end_time(self):
return self.orders["last_update_timestamp"].max()
@property
def duration_seconds(self):
return (self.end_time - self.start_time).total_seconds()
@property
def buys(self):
return self.trade_fill[self.trade_fill["trade_type"] == "BUY"]
@property
def sells(self):
return self.trade_fill[self.trade_fill["trade_type"] == "SELL"]
@property
def total_buy_trades(self):
return self.buys["amount"].count()
@property
def total_sell_trades(self):
return self.sells["amount"].count()
@property
def total_orders(self):
return self.total_buy_trades + self.total_sell_trades
@dataclass
class SingleMarketStrategyData:
exchange: str
trading_pair: str
orders: pd.DataFrame
order_status: pd.DataFrame
trade_fill: pd.DataFrame
def get_filtered_strategy_data(self, start_date: datetime.datetime, end_date: datetime.datetime):
orders = self.orders[(self.orders["creation_timestamp"] >= start_date) & (self.orders["creation_timestamp"] <= end_date)].copy()
trade_fill = self.trade_fill[self.trade_fill["order_id"].isin(orders["id"])].copy()
order_status = self.order_status[self.order_status["order_id"].isin(orders["id"])].copy()
return SingleMarketStrategyData(
exchange=self.exchange,
trading_pair=self.trading_pair,
orders=orders,
order_status=order_status,
trade_fill=trade_fill,
)
@property
def start_time(self):
return self.orders["creation_timestamp"].min()
@property
def end_time(self):
return self.orders["last_update_timestamp"].max()
@property
def duration_seconds(self):
return (self.end_time - self.start_time).total_seconds()
@property
def start_price(self):
return self.trade_fill["price"].iat[0]
@property
def end_price(self):
return self.trade_fill["price"].iat[-1]
@property
def buys(self):
return self.trade_fill[self.trade_fill["trade_type"] == "BUY"]
@property
def sells(self):
return self.trade_fill[self.trade_fill["trade_type"] == "SELL"]
@property
def total_buy_amount(self):
return self.buys["amount"].sum()
@property
def total_sell_amount(self):
return self.sells["amount"].sum()
@property
def total_buy_trades(self):
return self.buys["amount"].count()
@property
def total_sell_trades(self):
return self.sells["amount"].count()
@property
def total_orders(self):
return self.total_buy_trades + self.total_sell_trades
@property
def average_buy_price(self):
average_price = (self.buys["price"] * self.buys["amount"]).sum() / self.total_buy_amount
return average_price
@property
def average_sell_price(self):
average_price = (self.sells["price"] * self.sells["amount"]).sum() / self.total_sell_amount
return average_price
@property
def price_change(self):
return (self.end_price - self.start_price) / self.start_price
@property
def trade_pnl_usd(self):
buy_volume = self.buys["amount"].sum() * self.average_buy_price
sell_volume = self.sells["amount"].sum() * self.average_sell_price
inventory_change_volume = self.inventory_change_base_asset * self.end_price
return sell_volume - buy_volume + inventory_change_volume
@property
def inventory_change_base_asset(self):
return self.total_buy_amount - self.total_sell_amount