Files
hummingbot-dashboard/pages/backtest_manager/app.py
2023-07-23 09:20:28 -04:00

187 lines
8.3 KiB
Python

import datetime
import threading
import webbrowser
import streamlit as st
from pathlib import Path
from streamlit_ace import st_ace
import constants
from quants_lab.strategy.strategy_analysis import StrategyAnalysis
from utils import os_utils
from utils.file_templates import strategy_optimization_template, directional_strategy_template
from utils.os_utils import load_directional_strategies, save_file, get_function_from_file
import optuna
# Page metadata
title = "Backtest Manager"
icon = "⚙️"
st.set_page_config(
page_title=title,
page_icon=icon,
layout="wide",
)
st.title(f"{icon} {title}")
# About this page
current_directory = Path(__file__).parent
readme_path = current_directory / "README.md"
with st.expander("About This Page"):
st.write(readme_path.read_text())
# Start content here
if "strategy_params" not in st.session_state:
st.session_state.strategy_params = {}
create, modify, backtest, optimize, analyze = st.tabs(["Create", "Modify", "Backtest", "Optimize", "Analyze"])
with create:
# TODO:
# * Add videos explaining how to the triple barrier method works and how the backtesting is designed,
# link to video of how to create a strategy, etc in a toggle.
# * Add functionality to start strategy creation from scratch or by duplicating an existing one
c1, c2 = st.columns([4, 1])
with c1:
# TODO: Allow change the strategy name and see the effect in the code
strategy_name = st.text_input("Strategy class name", value="CustomStrategy")
with c2:
update_strategy_name = st.button("Update Strategy Name")
c1, c2 = st.columns([4, 1])
with c1:
# TODO: every time that we save and run the optimizations, we should save the code in a file
# so the user then can correlate the results with the code.
if update_strategy_name:
st.session_state.directional_strategy_code = st_ace(key="create_directional_strategy",
value=directional_strategy_template(strategy_name),
language='python',
keybinding='vscode',
theme='pastel_on_dark')
with c2:
if st.button("Save strategy"):
save_file(name=f"{strategy_name.lower()}.py", content=st.session_state.directional_strategy_code,
path=constants.DIRECTIONAL_STRATEGIES_PATH)
st.success(f"Strategy {strategy_name} saved successfully")
with modify:
pass
with backtest:
# TODO:
# * Add videos explaining how to the triple barrier method works and how the backtesting is designed,
# link to video of how to create a strategy, etc in a toggle.
# * Add performance analysis graphs of the backtesting run
strategies = load_directional_strategies(constants.DIRECTIONAL_STRATEGIES_PATH)
strategy_to_optimize = st.selectbox("Select strategy to backtest", strategies.keys())
strategy = strategies[strategy_to_optimize]
strategy_config = strategy["config"]
field_schema = strategy_config.schema()["properties"]
st.write("## Strategy parameters")
c1, c2 = st.columns([5, 1])
with c1:
columns = st.columns(4)
column_index = 0
for field_name, properties in field_schema.items():
field_type = properties["type"]
with columns[column_index]:
if field_type in ["number", "integer"]:
field_value = st.number_input(field_name,
value=properties["default"],
min_value=properties.get("minimum"),
max_value=properties.get("maximum"),
key=field_name)
elif field_type == "string":
field_value = st.text_input(field_name, value=properties["default"])
elif field_type == "boolean":
# TODO: Add support for boolean fields in optimize tab
field_value = st.checkbox(field_name, value=properties["default"])
else:
raise ValueError(f"Field type {field_type} not supported")
st.session_state["strategy_params"][field_name] = field_value
column_index = (column_index + 1) % 4
with c2:
add_positions = st.checkbox("Add positions", value=True)
add_volume = st.checkbox("Add volume", value=True)
add_pnl = st.checkbox("Add PnL", value=True)
run_backtesting_button = st.button("Run Backtesting!")
if run_backtesting_button:
config = strategy["config"](**st.session_state["strategy_params"])
strategy = strategy["class"](config=config)
# TODO: add form for order amount, leverage, tp, sl, etc.
market_data, positions = strategy.run_backtesting(
start='2021-04-01',
order_amount=50,
leverage=20,
initial_portfolio=100,
take_profit_multiplier=2.3,
stop_loss_multiplier=1.2,
time_limit=60 * 60 * 3,
std_span=None,
)
strategy_analysis = StrategyAnalysis(
positions=positions,
candles_df=market_data,
)
st.text(strategy_analysis.text_report())
# TODO: check why the pnl is not being plotted
strategy_analysis.create_base_figure(volume=add_volume, positions=add_positions, trade_pnl=add_pnl)
st.plotly_chart(strategy_analysis.figure(), use_container_width=True)
with optimize:
# TODO:
# * Add videos explaining how to use the optimization tool, quick intro to optuna, etc in a toggle
with st.container():
c1, c2, c3 = st.columns([1, 1, 1])
with c1:
strategies = load_directional_strategies(constants.DIRECTIONAL_STRATEGIES_PATH)
strategy_to_optimize = st.selectbox("Select strategy to optimize", strategies.keys())
with c2:
today = datetime.datetime.today()
# TODO: add hints about the study name
STUDY_NAME = st.text_input("Study name",
f"{strategy_to_optimize}_study_{today.day:02d}-{today.month:02d}-{today.year}")
with c3:
generate_optimization_code_button = st.button("Generate Optimization Code")
if st.button("Launch optuna dashboard"):
os_utils.execute_bash_command(f"optuna-dashboard sqlite:///data/backtesting/backtesting_report.db")
webbrowser.open("http://127.0.0.1:8080/dashboard", new=2)
c1, c2 = st.columns([4, 1])
if generate_optimization_code_button:
with c1:
# TODO: every time that we save and run the optimizations, we should save the code in a file
# so the user then can correlate the results with the code.
st.session_state.optimization_code = st_ace(key="create_optimization_code",
value=strategy_optimization_template(
strategy_info=strategies[strategy_to_optimize]),
language='python',
keybinding='vscode',
theme='pastel_on_dark')
if "optimization_code" in st.session_state:
with c2:
if st.button("Run optimization"):
save_file(name=f"{STUDY_NAME}.py", content=st.session_state.optimization_code, path=constants.OPTIMIZATIONS_PATH)
study = optuna.create_study(direction="maximize", study_name=STUDY_NAME,
storage="sqlite:///data/backtesting/backtesting_report.db",
load_if_exists=True)
objective = get_function_from_file(file_path=f"{constants.OPTIMIZATIONS_PATH}/{STUDY_NAME}.py",
function_name="objective")
def optimization_process():
study.optimize(objective, n_trials=2000)
optimization_thread = threading.Thread(target=optimization_process)
optimization_thread.start()
with analyze:
# TODO:
# * Add graphs for all backtesting results
# * Add management of backtesting results (delete, rename, save, share, upload s3, etc)
pass