import datetime from dataclasses import dataclass import pandas as pd @dataclass class StrategyData: orders: pd.DataFrame order_status: pd.DataFrame trade_fill: pd.DataFrame market_data: pd.DataFrame = None position_executor: pd.DataFrame = None @property def strategy_summary(self): if self.trade_fill is not None: return self.get_strategy_summary() else: return None def get_strategy_summary(self): def full_series(series): return list(series) strategy_data = self.trade_fill.copy() strategy_data["volume"] = strategy_data["amount"] * strategy_data["price"] strategy_data["margin_volume"] = strategy_data["amount"] * strategy_data["price"] / strategy_data["leverage"] strategy_summary = strategy_data.groupby(["strategy", "market", "symbol"]).agg({"order_id": "count", "volume": "sum", "margin_volume": "sum", "net_realized_pnl": [full_series, "last"]}).reset_index() strategy_summary.columns = [f"{col[0]}_{col[1]}" if isinstance(col, tuple) and col[1] is not None else col for col in strategy_summary.columns] strategy_summary.rename(columns={"strategy_": "Strategy", "market_": "Exchange", "symbol_": "Trading Pair", "order_id_count": "# Trades", "volume_sum": "Volume", "margin_volume_sum": "Margin volume", "net_realized_pnl_full_series": "PnL Over Time", "net_realized_pnl_last": "Realized PnL"}, inplace=True) strategy_summary.sort_values(["Realized PnL"], ascending=True, inplace=True) strategy_summary["Explore"] = False column_names = list(strategy_summary.columns) column_names.insert(0, column_names.pop()) strategy_summary = strategy_summary[column_names] return strategy_summary def get_single_market_strategy_data(self, exchange: str, trading_pair: str): orders = self.orders[(self.orders["market"] == exchange) & (self.orders["symbol"] == trading_pair)].copy() trade_fill = self.trade_fill[self.trade_fill["order_id"].isin(orders["id"])].copy() order_status = self.order_status[self.order_status["order_id"].isin(orders["id"])].copy() if self.market_data is not None: market_data = self.market_data[(self.market_data["exchange"] == exchange) & (self.market_data["trading_pair"] == trading_pair)].copy() else: market_data = None if self.position_executor is not None: position_executor = self.position_executor[(self.position_executor["exchange"] == exchange) & (self.position_executor["trading_pair"] == trading_pair)].copy() else: position_executor = None return SingleMarketStrategyData( exchange=exchange, trading_pair=trading_pair, orders=orders, order_status=order_status, trade_fill=trade_fill, market_data=market_data, position_executor=position_executor ) @property def exchanges(self): return self.trade_fill["market"].unique() @property def trading_pairs(self): return self.trade_fill["symbol"].unique() @property def start_time(self): return self.orders["creation_timestamp"].min() @property def end_time(self): return self.orders["last_update_timestamp"].max() @property def duration_seconds(self): return (self.end_time - self.start_time).total_seconds() @property def buys(self): return self.trade_fill[self.trade_fill["trade_type"] == "BUY"] @property def sells(self): return self.trade_fill[self.trade_fill["trade_type"] == "SELL"] @property def total_buy_trades(self): return self.buys["amount"].count() @property def total_sell_trades(self): return self.sells["amount"].count() @property def total_orders(self): return self.total_buy_trades + self.total_sell_trades @dataclass class SingleMarketStrategyData: exchange: str trading_pair: str orders: pd.DataFrame order_status: pd.DataFrame trade_fill: pd.DataFrame market_data: pd.DataFrame = None position_executor: pd.DataFrame = None def get_filtered_strategy_data(self, start_date: datetime.datetime, end_date: datetime.datetime): orders = self.orders[ (self.orders["creation_timestamp"] >= start_date) & (self.orders["creation_timestamp"] <= end_date)].copy() trade_fill = self.trade_fill[self.trade_fill["order_id"].isin(orders["id"])].copy() order_status = self.order_status[self.order_status["order_id"].isin(orders["id"])].copy() if self.market_data is not None: market_data = self.market_data[ (self.market_data.index >= start_date) & (self.market_data.index <= end_date)].copy() else: market_data = None if self.position_executor is not None: position_executor = self.position_executor[(self.position_executor.datetime >= start_date) & (self.position_executor.datetime <= end_date)].copy() else: position_executor = None return SingleMarketStrategyData( exchange=self.exchange, trading_pair=self.trading_pair, orders=orders, order_status=order_status, trade_fill=trade_fill, market_data=market_data, position_executor=position_executor ) def get_market_data_resampled(self, interval): data_resampled = self.market_data.resample(interval).agg({ "mid_price": "ohlc", "best_bid": "last", "best_ask": "last", }) data_resampled.columns = data_resampled.columns.droplevel(0) return data_resampled @property def base_asset(self): return self.trading_pair.split("-")[0] @property def quote_asset(self): return self.trading_pair.split("-")[1] @property def start_time(self): return self.orders["creation_timestamp"].min() @property def end_time(self): return self.orders["last_update_timestamp"].max() @property def duration_seconds(self): return (self.end_time - self.start_time).total_seconds() @property def start_price(self): return self.trade_fill["price"].iat[0] @property def end_price(self): return self.trade_fill["price"].iat[-1] @property def buys(self): return self.trade_fill[self.trade_fill["trade_type"] == "BUY"] @property def sells(self): return self.trade_fill[self.trade_fill["trade_type"] == "SELL"] @property def total_buy_amount(self): return self.buys["amount"].sum() @property def total_sell_amount(self): return self.sells["amount"].sum() @property def total_buy_trades(self): return self.buys["amount"].count() @property def total_sell_trades(self): return self.sells["amount"].count() @property def total_orders(self): return self.total_buy_trades + self.total_sell_trades @property def average_buy_price(self): average_price = (self.buys["price"] * self.buys["amount"]).sum() / self.total_buy_amount return average_price @property def average_sell_price(self): average_price = (self.sells["price"] * self.sells["amount"]).sum() / self.total_sell_amount return average_price @property def price_change(self): return (self.end_price - self.start_price) / self.start_price @property def trade_pnl_quote(self): buy_volume = self.buys["amount"].sum() * self.average_buy_price sell_volume = self.sells["amount"].sum() * self.average_sell_price inventory_change_volume = self.inventory_change_base_asset * self.end_price return sell_volume - buy_volume + inventory_change_volume @property def cum_fees_in_quote(self): return self.trade_fill["trade_fee_in_quote"].sum() @property def net_pnl_quote(self): return self.trade_pnl_quote - self.cum_fees_in_quote @property def inventory_change_base_asset(self): return self.total_buy_amount - self.total_sell_amount @property def accuracy(self): total_wins = len(self.trade_fill["net_realized_pnl"] >= 0) total_losses = len(self.trade_fill["net_realized_pnl"] < 0) return total_wins / (total_wins + total_losses) @property def profit_factor(self): total_profit = self.trade_fill.loc[self.trade_fill["realized_pnl"] >= 0, "realized_pnl"].sum() total_loss = self.trade_fill.loc[self.trade_fill["realized_pnl"] < 0, "realized_pnl"].sum() return total_profit / -total_loss @property def properties_table(self): properties_dict = {"Base Asset": self.base_asset, "Quote Asset": self.quote_asset, # "Start Time": self.start_time, # "End Time": self.end_time, "Exchange": self.exchange, "Trading pair": self.trading_pair, "Duration (seconds)": self.duration_seconds, "Start Price": self.start_price, "End Price": self.end_price, "Total Buy Amount": self.total_buy_amount, "Total Sell Amount": self.total_sell_amount, "Total Buy Trades": self.total_buy_trades, "Total Sell Trades": self.total_sell_trades, "Total Orders": self.total_orders, "Average Buy Price": self.average_buy_price, "Average Sell Price": self.average_sell_price, "Price Change": self.price_change, "Trade PnL Quote": self.trade_pnl_quote, "Cum Fees in Quote": self.cum_fees_in_quote, "Net PnL Quote": self.net_pnl_quote, "Inventory Change (base asset)": self.inventory_change_base_asset} properties_table = pd.DataFrame([properties_dict]).transpose().reset_index() properties_table.columns = ["Metric", "Value"] return properties_table