(feat) add visualizations for backtesting

This commit is contained in:
cardosofede
2024-05-16 18:21:37 -04:00
parent 810642df37
commit 4ba64bfbd4
4 changed files with 83 additions and 0 deletions

View File

@@ -0,0 +1,33 @@
from plotly.subplots import make_subplots
from frontend.visualization.candles import get_candlestick_trace
from frontend.visualization.executors import add_executors_trace
from frontend.visualization.pnl import get_pnl_trace
from frontend.visualization.theme import get_default_layout
def create_backtesting_figure(df, executors, config):
# Create subplots
fig = make_subplots(rows=2, cols=1, shared_xaxes=True,
vertical_spacing=0.02, subplot_titles=('Candlestick', 'PNL Quote'),
row_heights=[0.7, 0.3])
# Add candlestick trace
fig.add_trace(get_candlestick_trace(df), row=1, col=1)
# Add executors trace
fig = add_executors_trace(fig, executors, row=1, col=1)
# Add PNL trace
fig.add_trace(get_pnl_trace(executors), row=2, col=1)
# Apply the theme layout
layout_settings = get_default_layout(f"Trading Pair: {config['trading_pair']}")
layout_settings["showlegend"] = False
fig.update_layout(**layout_settings)
# Update axis properties
fig.update_xaxes(rangeslider_visible=False, row=1, col=1)
fig.update_xaxes(row=2, col=1)
fig.update_yaxes(title_text="Price", row=1, col=1)
fig.update_yaxes(title_text="PNL", row=2, col=1)
return fig

View File

@@ -0,0 +1,12 @@
import plotly.graph_objects as go
import pandas as pd
def get_candlestick_trace(df):
df.index = pd.to_datetime(df.timestamp, unit='ms')
return go.Candlestick(x=df.index,
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name="Candlesticks",
increasing_line_color='#2ECC71', decreasing_line_color='#E74C3C')

View File

@@ -0,0 +1,23 @@
import plotly.graph_objects as go
import pandas as pd
from decimal import Decimal
def add_executors_trace(fig, executors, row, col):
for executor in executors:
entry_time = pd.to_datetime(executor.timestamp, unit='ms')
entry_price = executor.custom_info["current_position_average_price"]
exit_time = pd.to_datetime(executor.close_timestamp, unit='ms')
exit_price = executor.custom_info["close_price"]
if executor.filled_amount_quote == 0:
fig.add_trace(go.Scatter(x=[entry_time, exit_time], y=[entry_price, exit_price], mode='lines',
line=dict(color='blue', width=2, dash="dash"), name='Buy Entry/Exit'), row=row, col=col)
else:
if executor.net_pnl_quote > Decimal(0):
fig.add_trace(go.Scatter(x=[entry_time, exit_time], y=[entry_price, exit_price], mode='lines',
line=dict(color='green', width=2), name='Buy Entry/Exit'), row=row, col=col)
else:
fig.add_trace(go.Scatter(x=[entry_time, exit_time], y=[entry_price, exit_price], mode='lines',
line=dict(color='red', width=2), name='Sell Entry/Exit'), row=row, col=col)
return fig

View File

@@ -0,0 +1,15 @@
import plotly.graph_objects as go
import numpy as np
import pandas as pd
def get_pnl_trace(executors):
pnl = [e.net_pnl_quote for e in executors]
cum_pnl = np.cumsum(pnl)
return go.Scatter(
x=pd.to_datetime([e.close_timestamp for e in executors], unit="ms"),
y=cum_pnl,
mode='lines',
line=dict(color='blue', width=2, dash="dash"),
name='Cumulative PNL'
)