diff --git a/pages/strategy_performance/app.py b/pages/strategy_performance/app.py
index ea7405a..d7ea0c0 100644
--- a/pages/strategy_performance/app.py
+++ b/pages/strategy_performance/app.py
@@ -1,18 +1,16 @@
import os
import pandas as pd
import streamlit as st
-import plotly.graph_objects as go
import math
-import plotly.express as px
-from utils.os_utils import get_bots_data_paths
+from utils.os_utils import get_databases
from utils.database_manager import DatabaseManager
-from utils.graphs import CandlesGraph
-from utils.st_utils import initialize_st_page
+from utils.graphs import PerformanceGraphs
+from utils.st_utils import initialize_st_page, download_csv_button, style_metric_cards, db_error_message
+
initialize_st_page(title="Strategy Performance", icon="š")
+style_metric_cards()
-BULLISH_COLOR = "rgba(97, 199, 102, 0.9)"
-BEARISH_COLOR = "rgba(255, 102, 90, 0.9)"
UPLOAD_FOLDER = "data"
# Start content here
@@ -27,257 +25,10 @@ intervals = {
"1d": 60 * 60 * 24,
}
-
-def get_databases():
- databases = {}
- bots_data_paths = get_bots_data_paths()
- for source_name, source_path in bots_data_paths.items():
- sqlite_files = {}
- for db_name in os.listdir(source_path):
- if db_name.endswith(".sqlite"):
- sqlite_files[db_name] = os.path.join(source_path, db_name)
- databases[source_name] = sqlite_files
- if len(databases) > 0:
- return {key: value for key, value in databases.items() if value}
- else:
- return None
-
-
-def download_csv(df: pd.DataFrame, filename: str, key: str):
- csv = df.to_csv(index=False).encode('utf-8')
- return st.download_button(
- label="Press to Download",
- data=csv,
- file_name=f"{filename}.csv",
- mime="text/csv",
- key=key
- )
-
-
-def style_metric_cards(
- background_color: str = "rgba(255, 255, 255, 0)",
- border_size_px: int = 1,
- border_color: str = "rgba(255, 255, 255, 0.3)",
- border_radius_px: int = 5,
- border_left_color: str = "rgba(255, 255, 255, 0.5)",
- box_shadow: bool = True,
-):
-
- box_shadow_str = (
- "box-shadow: 0 0.15rem 1.75rem 0 rgba(58, 59, 69, 0.15) !important;"
- if box_shadow
- else "box-shadow: none !important;"
- )
- st.markdown(
- f"""
-
- """,
- unsafe_allow_html=True,
- )
-
-
-def show_strategy_summary(summary_df: pd.DataFrame):
- summary = st.data_editor(summary_df,
- column_config={"PnL Over Time": st.column_config.LineChartColumn("PnL Over Time",
- y_min=0,
- y_max=5000),
- "Explore": st.column_config.CheckboxColumn(required=True)
- },
- use_container_width=True,
- hide_index=True
- )
- selected_rows = summary[summary.Explore]
- if len(selected_rows) > 0:
- return selected_rows
- else:
- return None
-
-
-def summary_chart(df: pd.DataFrame):
- fig = px.bar(df, x="Trading Pair", y="Realized PnL", color="Exchange")
- fig.update_traces(width=min(1.0, 0.1 * len(strategy_data.strategy_summary)))
- return fig
-
-
-def pnl_over_time(df: pd.DataFrame):
- df.reset_index(drop=True, inplace=True)
- df_above = df[df['net_realized_pnl'] >= 0]
- df_below = df[df['net_realized_pnl'] < 0]
-
- fig = go.Figure()
- fig.add_trace(go.Bar(name="Cum Realized PnL",
- x=df_above.index,
- y=df_above["net_realized_pnl"],
- marker_color=BULLISH_COLOR,
- # hoverdq
- showlegend=False))
- fig.add_trace(go.Bar(name="Cum Realized PnL",
- x=df_below.index,
- y=df_below["net_realized_pnl"],
- marker_color=BEARISH_COLOR,
- showlegend=False))
- fig.update_layout(title=dict(
- text='Cummulative PnL', # Your title text
- x=0.43,
- y=0.95,
- ),
- plot_bgcolor='rgba(0,0,0,0)',
- paper_bgcolor='rgba(0,0,0,0)')
- return fig
-
-
-def top_n_trades(series, n: int = 8):
- podium = list(range(0, n))
- top_three_profits = series[series >= 0].sort_values(ascending=True)[-n:]
- top_three_losses = series[series < 0].sort_values(ascending=False)[-n:]
- fig = go.Figure()
- fig.add_trace(go.Bar(name="Top Profits",
- y=podium,
- x=top_three_profits,
- base=[0, 0, 0, 0],
- marker_color=BULLISH_COLOR,
- orientation='h',
- text=top_three_profits.apply(lambda x: f"{x:.2f}"),
- textposition="inside",
- insidetextfont=dict(color='white')))
- fig.add_trace(go.Bar(name="Top Losses",
- y=podium,
- x=top_three_losses,
- marker_color=BEARISH_COLOR,
- orientation='h',
- text=top_three_losses.apply(lambda x: f"{x:.2f}"),
- textposition="inside",
- insidetextfont=dict(color='white')))
- fig.update_layout(barmode='stack',
- title=dict(
- text='Top/Worst Realized PnLs', # Your title text
- x=0.5,
- y=0.95,
- xanchor="center",
- yanchor="top"
- ),
- xaxis=dict(showgrid=True, gridwidth=0.01, gridcolor="rgba(211, 211, 211, 0.5)"), # Show vertical grid lines
- yaxis=dict(showgrid=False),
- legend=dict(orientation="h",
- x=0.5,
- y=1.08,
- xanchor="center",
- yanchor="bottom"))
- fig.update_yaxes(showticklabels=False,
- showline=False,
- range=[- n + 6, n + 1])
- return fig
-
-
-def intraday_performance(df: pd.DataFrame):
- def hr2angle(hr):
- return (hr * 15) % 360
-
- def hr_str(hr):
- # Normalize hr to be between 1 and 12
- hr_str = str(((hr - 1) % 12) + 1)
- suffix = ' AM' if (hr % 24) < 12 else ' PM'
- return hr_str + suffix
-
- df["hour"] = df["timestamp"].dt.hour
- realized_pnl_per_hour = df.groupby("hour")[["realized_pnl", "quote_volume"]].sum().reset_index()
- fig = go.Figure()
- fig.add_trace(go.Barpolar(
- name="Profits",
- r=realized_pnl_per_hour["quote_volume"],
- theta=realized_pnl_per_hour["hour"] * 15,
- marker=dict(
- color=realized_pnl_per_hour["realized_pnl"],
- colorscale="RdYlGn",
- cmin=-(abs(realized_pnl_per_hour["realized_pnl"]).max()),
- cmid=0.0,
- cmax=(abs(realized_pnl_per_hour["realized_pnl"]).max()),
- colorbar=dict(
- title='Realized PnL',
- x=0,
- y=-0.5,
- xanchor='left',
- yanchor='bottom',
- orientation='h'
- )
- )))
- fig.update_layout(
- polar=dict(
- radialaxis=dict(
- visible=True,
- showline=False,
- ),
- angularaxis=dict(
- rotation=90,
- direction="clockwise",
- tickvals=[hr2angle(hr) for hr in range(24)],
- ticktext=[hr_str(hr) for hr in range(24)],
- ),
- bgcolor='rgba(255, 255, 255, 0)',
-
- ),
- legend=dict(
- orientation="h",
- x=0.5,
- y=1.08,
- xanchor="center",
- yanchor="bottom"
- ),
- title=dict(
- text='Intraday Performance',
- x=0.5,
- y=0.93,
- xanchor="center",
- yanchor="bottom"
- ),
- )
- return fig
-
-
-def returns_histogram(df: pd.DataFrame):
- fig = go.Figure()
- fig.add_trace(go.Histogram(name="Losses",
- x=df.loc[df["realized_pnl"] < 0, "realized_pnl"],
- marker_color=BEARISH_COLOR))
- fig.add_trace(go.Histogram(name="Profits",
- x=df.loc[df["realized_pnl"] > 0, "realized_pnl"],
- marker_color=BULLISH_COLOR))
- fig.update_layout(
- title=dict(
- text='Returns Distribution',
- x=0.5,
- xanchor="center",
- ),
- legend=dict(
- orientation="h",
- yanchor="bottom",
- y=1.02,
- xanchor="center",
- x=.48
- ))
- return fig
-
-
-def candles_graph(candles: pd.DataFrame, strat_data, show_volume=False, extra_rows=2):
- cg = CandlesGraph(candles, show_volume=show_volume, extra_rows=extra_rows)
- cg.add_buy_trades(strat_data.buys)
- cg.add_sell_trades(strat_data.sells)
- cg.add_pnl(strat_data, row=2)
- cg.add_quote_inventory_change(strat_data, row=3)
- return cg.figure()
-
-
-style_metric_cards()
+# Data source section
st.subheader("š« Data source")
+
+# Upload database
with st.expander("ā¬ļø Upload"):
uploaded_db = st.file_uploader("Select a Hummingbot SQLite Database", type=["sqlite", "db"])
if uploaded_db is not None:
@@ -286,171 +37,200 @@ with st.expander("ā¬ļø Upload"):
f.write(file_contents)
st.success("File uploaded and saved successfully!")
selected_db = DatabaseManager(uploaded_db.name)
+
+# Find and select existing databases
dbs = get_databases()
if dbs is not None:
bot_source = st.selectbox("Choose your database source:", dbs.keys())
db_names = [x for x in dbs[bot_source]]
selected_db_name = st.selectbox("Select a database to start:", db_names)
- executors_path = os.path.dirname(dbs[bot_source][selected_db_name])
- selected_db = DatabaseManager(db_name=dbs[bot_source][selected_db_name],
- executors_path=executors_path)
+ selected_db = DatabaseManager(db_name=dbs[bot_source][selected_db_name])
else:
st.warning("Ups! No databases were founded. Start uploading one")
selected_db = None
-if selected_db is not None:
- strategy_data = selected_db.get_strategy_data()
- if strategy_data.strategy_summary is not None:
- st.divider()
- st.subheader("š Strategy summary")
- table_tab, chart_tab = st.tabs(["Table", "Chart"])
- with table_tab:
- selection = show_strategy_summary(strategy_data.strategy_summary)
- if selection is not None:
- if len(selection) > 1:
- st.warning("This version doesn't support multiple selections. Please try selecting only one.")
- st.stop()
- selected_exchange = selection["Exchange"].values[0]
- selected_trading_pair = selection["Trading Pair"].values[0]
- with chart_tab:
- summary_chart = summary_chart(strategy_data.strategy_summary)
- st.plotly_chart(summary_chart, use_container_width=True)
+ st.stop()
+
+# Load strategy data
+strategy_data = selected_db.get_strategy_data()
+main_performance_charts = PerformanceGraphs(strategy_data)
+
+# Strategy summary section
+st.divider()
+st.subheader("š Strategy summary")
+if not main_performance_charts.has_summary_table:
+ db_error_message(db=selected_db,
+ error_message="Inaccesible summary table. Please try uploading a new database.")
+ st.stop()
+else:
+ main_tab, chart_tab = st.tabs(["Main", "Chart"])
+ with chart_tab:
+ st.plotly_chart(main_performance_charts.summary_chart(), use_container_width=True)
+ with main_tab:
+ selection = main_performance_charts.strategy_summary_table()
if selection is None:
st.info("š” Choose a trading pair and start analyzing!")
+ st.stop()
+ elif len(selection) > 1:
+ st.warning("This version doesn't support multiple selections. Please try selecting only one.")
+ st.stop()
else:
- st.divider()
- st.subheader("š Explore Trading Pair")
- if not any("Error" in value for key, value in selected_db.status.items() if key != "position_executor"):
- date_array = pd.date_range(start=strategy_data.start_time, end=strategy_data.end_time, periods=60)
- start_time, end_time = st.select_slider("Select a time range to analyze",
- options=date_array.tolist(),
- value=(date_array[0], date_array[-1]))
+ selected_exchange = selection["Exchange"].values[0]
+ selected_trading_pair = selection["Trading Pair"].values[0]
- single_market = True
- if single_market:
- single_market_strategy_data = strategy_data.get_single_market_strategy_data(selected_exchange, selected_trading_pair)
- strategy_data_filtered = single_market_strategy_data.get_filtered_strategy_data(start_time, end_time)
- with st.container():
- col1, col2, col3, col4, col5, col6, col7, col8 = st.columns(8)
- with col1:
- st.metric(label=f'Net PNL {strategy_data_filtered.quote_asset}',
- value=round(strategy_data_filtered.net_pnl_quote, 2))
- with col2:
- st.metric(label='Total Trades', value=strategy_data_filtered.total_orders)
- with col3:
- st.metric(label='Accuracy',
- value=f"{100 * strategy_data_filtered.accuracy:.2f} %")
- with col4:
- st.metric(label="Profit Factor",
- value=round(strategy_data_filtered.profit_factor, 2))
- with col5:
- st.metric(label='Duration (Days)',
- value=round(strategy_data_filtered.duration_seconds / (60 * 60 * 24), 2))
- with col6:
- st.metric(label='Price change',
- value=f"{round(strategy_data_filtered.price_change * 100, 2)} %")
- with col7:
- buy_trades_amount = round(strategy_data_filtered.total_buy_amount, 2)
- avg_buy_price = round(strategy_data_filtered.average_buy_price, 4)
- st.metric(label="Total Buy Volume",
- value=round(buy_trades_amount * avg_buy_price, 2))
- with col8:
- sell_trades_amount = round(strategy_data_filtered.total_sell_amount, 2)
- avg_sell_price = round(strategy_data_filtered.average_sell_price, 4)
- st.metric(label="Total Sell Volume",
- value=round(sell_trades_amount * avg_sell_price, 2))
- st.plotly_chart(pnl_over_time(strategy_data_filtered.trade_fill), use_container_width=True)
- st.subheader("š± Market activity")
- if "Error" not in selected_db.status["market_data"] and strategy_data_filtered.market_data is not None:
- col1, col2, col3, col4 = st.columns(4)
- with col1:
- interval = st.selectbox("Candles Interval:", intervals.keys(), index=2)
- with col2:
- rows_per_page = st.number_input("Candles per Page", value=1500, min_value=1, max_value=5000)
- with col3:
- st.markdown("##")
- show_panel_metrics = st.checkbox("Show panel metrics", value=True)
- with col4:
- total_rows = len(
- strategy_data_filtered.get_market_data_resampled(interval=f"{intervals[interval]}S"))
- total_pages = math.ceil(total_rows / rows_per_page)
- if total_pages > 1:
- selected_page = st.select_slider("Select page", list(range(total_pages)), total_pages - 1,
- key="page_slider")
- else:
- selected_page = 0
- start_idx = selected_page * rows_per_page
- end_idx = start_idx + rows_per_page
- candles_df = strategy_data_filtered.get_market_data_resampled(
- interval=f"{intervals[interval]}S").iloc[
- start_idx:end_idx]
- start_time_page = candles_df.index.min()
- end_time_page = candles_df.index.max()
- page_data_filtered = single_market_strategy_data.get_filtered_strategy_data(start_time_page,
- end_time_page)
- if show_panel_metrics:
- col1, col2 = st.columns([2, 1])
- with col1:
- candles_chart = candles_graph(candles_df, page_data_filtered)
- st.plotly_chart(candles_chart, use_container_width=True)
- with col2:
- chart_tab, table_tab = st.tabs(["Chart", "Table"])
- with chart_tab:
- st.plotly_chart(intraday_performance(page_data_filtered.trade_fill), use_container_width=True)
- st.plotly_chart(returns_histogram(page_data_filtered.trade_fill), use_container_width=True)
- with table_tab:
- st.dataframe(page_data_filtered.trade_fill[["timestamp", "gross_pnl", "trade_fee", "realized_pnl"]].dropna(subset="realized_pnl"),
- use_container_width=True,
- hide_index=True,
- height=(min(len(page_data_filtered.trade_fill) * 39, candles_chart.layout.height - 180)))
- else:
- st.plotly_chart(candles_graph(candles_df, page_data_filtered), use_container_width=True)
- else:
- st.warning("Market data is not available so the candles graph is not going to be rendered. "
- "Make sure that you are using the latest version of Hummingbot and market data recorder activated.")
- st.divider()
- st.subheader("š Metrics")
- with st.container():
- col1, col2, col3, col4, col5 = st.columns(5)
- with col1:
- st.metric(label=f'Trade PNL {strategy_data_filtered.quote_asset}',
- value=round(strategy_data_filtered.trade_pnl_quote, 2))
- st.metric(label=f'Fees {strategy_data_filtered.quote_asset}',
- value=round(strategy_data_filtered.cum_fees_in_quote, 2))
- with col2:
- st.metric(label='Total Buy Trades', value=strategy_data_filtered.total_buy_trades)
- st.metric(label='Total Sell Trades', value=strategy_data_filtered.total_sell_trades)
- with col3:
- st.metric(label='Total Buy Trades Amount',
- value=round(strategy_data_filtered.total_buy_amount, 2))
- st.metric(label='Total Sell Trades Amount',
- value=round(strategy_data_filtered.total_sell_amount, 2))
- with col4:
- st.metric(label='Average Buy Price', value=round(strategy_data_filtered.average_buy_price, 4))
- st.metric(label='Average Sell Price', value=round(strategy_data_filtered.average_sell_price, 4))
- with col5:
- st.metric(label='Inventory change in Base asset',
- value=round(strategy_data_filtered.inventory_change_base_asset, 4))
- st.divider()
- st.subheader("Tables")
- with st.expander("šµ Trades"):
- st.write(strategy_data.trade_fill)
- download_csv(strategy_data.trade_fill, "trade_fill", "download-trades")
- with st.expander("š© Orders"):
- st.write(strategy_data.orders)
- download_csv(strategy_data.orders, "orders", "download-orders")
- with st.expander("ā Order Status"):
- st.write(strategy_data.order_status)
- download_csv(strategy_data.order_status, "order_status", "download-order-status")
+# Explore Trading Pair section
+st.divider()
+st.subheader("š Explore Trading Pair")
+
+if any("Error" in status for status in [selected_db.status["trade_fill"], selected_db.status["orders"]]):
+ db_error_message(db=selected_db,
+ error_message="Database error. Check the status of your database.")
+ st.stop()
+
+# Filter strategy data by time
+date_array = pd.date_range(start=strategy_data.start_time, end=strategy_data.end_time, periods=60)
+start_time, end_time = st.select_slider("Select a time range to analyze",
+ options=date_array.tolist(),
+ value=(date_array[0], date_array[-1]))
+single_market_strategy_data = strategy_data.get_single_market_strategy_data(selected_exchange, selected_trading_pair)
+time_filtered_strategy_data = single_market_strategy_data.get_filtered_strategy_data(start_time, end_time)
+time_filtered_performance_charts = PerformanceGraphs(time_filtered_strategy_data)
+
+# Header metrics
+col1, col2, col3, col4, col5, col6, col7, col8 = st.columns(8)
+with col1:
+ st.metric(label=f'Net PNL {time_filtered_strategy_data.quote_asset}',
+ value=round(time_filtered_strategy_data.net_pnl_quote, 2),
+ help="The overall profit or loss achieved in quote asset.")
+with col2:
+ st.metric(label='Total Trades', value=time_filtered_strategy_data.total_orders,
+ help="The total number of closed trades, winning and losing.")
+with col3:
+ st.metric(label='Accuracy',
+ value=f"{100 * time_filtered_strategy_data.accuracy:.2f} %",
+ help="The percentage of winning trades, the number of winning trades divided by the total number of closed trades.")
+with col4:
+ st.metric(label="Profit Factor",
+ value=round(time_filtered_strategy_data.profit_factor, 2),
+ help="The amount of money the strategy made for every unit of money it lost, net profits divided by gross losses.")
+with col5:
+ st.metric(label='Duration (Days)',
+ value=round(time_filtered_strategy_data.duration_seconds / (60 * 60 * 24), 2),
+ help="The number of days the strategy was running.")
+with col6:
+ st.metric(label='Price change',
+ value=f"{round(time_filtered_strategy_data.price_change * 100, 2)} %",
+ help="The percentage change in price from the start to the end of the strategy.")
+with col7:
+ buy_trades_amount = round(time_filtered_strategy_data.total_buy_amount, 2)
+ avg_buy_price = round(time_filtered_strategy_data.average_buy_price, 4)
+ st.metric(label="Total Buy Volume",
+ value=round(buy_trades_amount * avg_buy_price, 2),
+ help="The total amount of quote asset bought.")
+with col8:
+ sell_trades_amount = round(time_filtered_strategy_data.total_sell_amount, 2)
+ avg_sell_price = round(time_filtered_strategy_data.average_sell_price, 4)
+ st.metric(label="Total Sell Volume",
+ value=round(sell_trades_amount * avg_sell_price, 2),
+ help="The total amount of quote asset sold.")
+
+# Cummulative pnl chart
+st.plotly_chart(time_filtered_performance_charts.pnl_over_time(), use_container_width=True)
+
+# Market activity section
+st.subheader("š± Market activity")
+if "Error" in selected_db.status["market_data"] or time_filtered_strategy_data.market_data.empty:
+ st.warning("Market data is not available so the candles graph is not going to be rendered."
+ "Make sure that you are using the latest version of Hummingbot and market data recorder activated.")
+else:
+ col1, col2 = st.columns([3, 1])
+ with col2:
+ # Set custom configs
+ interval = st.selectbox("Candles Interval:", intervals.keys(), index=2)
+ rows_per_page = st.number_input("Candles per Page", value=1500, min_value=1, max_value=5000)
+
+ # Add pagination
+ total_rows = len(time_filtered_strategy_data.get_market_data_resampled(interval=f"{intervals[interval]}S"))
+ total_pages = math.ceil(total_rows / rows_per_page)
+ if total_pages > 1:
+ selected_page = st.select_slider("Select page", list(range(total_pages)), total_pages - 1, key="page_slider")
+ else:
+ selected_page = 0
+ start_idx = selected_page * rows_per_page
+ end_idx = start_idx + rows_per_page
+ candles_df = time_filtered_strategy_data.get_market_data_resampled(interval=f"{intervals[interval]}S").iloc[start_idx:end_idx]
+ start_time_page = candles_df.index.min()
+ end_time_page = candles_df.index.max()
+
+ # Get Page Filtered Strategy Data
+ page_filtered_strategy_data = single_market_strategy_data.get_filtered_strategy_data(start_time_page, end_time_page)
+ page_performance_charts = PerformanceGraphs(page_filtered_strategy_data)
+ candles_chart = page_performance_charts.candles_graph(candles_df, interval=interval)
+
+ # Show auxiliary charts
+ intraday_tab, returns_tab, returns_data_tab, positions_tab, other_metrics_tab = st.tabs(["Intraday", "Returns", "Returns Data", "Positions", "Other Metrics"])
+ with intraday_tab:
+ st.plotly_chart(time_filtered_performance_charts.intraday_performance(), use_container_width=True)
+ with returns_tab:
+ st.plotly_chart(time_filtered_performance_charts.returns_histogram(), use_container_width=True)
+ with returns_data_tab:
+ raw_returns_data = time_filtered_strategy_data.trade_fill[["timestamp", "gross_pnl", "trade_fee", "realized_pnl"]].dropna(subset="realized_pnl")
+ st.dataframe(raw_returns_data,
+ use_container_width=True,
+ hide_index=True,
+ height=(min(len(time_filtered_strategy_data.trade_fill) * 39, 600)))
+ download_csv_button(raw_returns_data, "raw_returns_data", "download-raw-returns")
+ with positions_tab:
+ positions_sunburst = page_performance_charts.position_executor_summary_sunburst()
+ if positions_sunburst:
+ st.plotly_chart(page_performance_charts.position_executor_summary_sunburst(), use_container_width=True)
else:
- st.warning("We are encountering challenges in maintaining continuous analysis of this database.")
- with st.expander("DB Status"):
- status_df = pd.DataFrame([selected_db.status]).transpose().reset_index()
- status_df.columns = ["Attribute", "Value"]
- st.table(status_df)
- else:
- st.warning("We were unable to process this SQLite database.")
- with st.expander("DB Status"):
- status_df = pd.DataFrame([selected_db.status]).transpose().reset_index()
- status_df.columns = ["Attribute", "Value"]
- st.table(status_df)
+ st.info("No position executor data found.")
+ with other_metrics_tab:
+ col3, col4 = st.columns(2)
+ with col3:
+ st.metric(label=f'Trade PNL {time_filtered_strategy_data.quote_asset}',
+ value=round(time_filtered_strategy_data.trade_pnl_quote, 2),
+ help="The overall profit or loss achieved in quote asset, without fees.")
+ st.metric(label='Total Buy Trades', value=time_filtered_strategy_data.total_buy_trades,
+ help="The total number of buy trades.")
+ st.metric(label='Total Buy Trades Amount',
+ value=round(time_filtered_strategy_data.total_buy_amount, 2),
+ help="The total amount of base asset bought.")
+ st.metric(label='Average Buy Price', value=round(time_filtered_strategy_data.average_buy_price, 4),
+ help="The average price of the base asset bought.")
+
+ with col4:
+ st.metric(label=f'Fees {time_filtered_strategy_data.quote_asset}',
+ value=round(time_filtered_strategy_data.cum_fees_in_quote, 2),
+ help="The overall fees paid in quote asset.")
+ st.metric(label='Total Sell Trades', value=time_filtered_strategy_data.total_sell_trades,
+ help="The total number of sell trades.")
+ st.metric(label='Total Sell Trades Amount',
+ value=round(time_filtered_strategy_data.total_sell_amount, 2),
+ help="The total amount of base asset sold.")
+ st.metric(label='Average Sell Price', value=round(time_filtered_strategy_data.average_sell_price, 4),
+ help="The average price of the base asset sold.")
+ with col1:
+ st.plotly_chart(candles_chart, use_container_width=True)
+
+# Tables section
+st.divider()
+st.subheader("Tables")
+with st.expander("šµ Trades"):
+ st.write(strategy_data.trade_fill)
+ download_csv_button(strategy_data.trade_fill, "trade_fill", "download-trades")
+with st.expander("š© Orders"):
+ st.write(strategy_data.orders)
+ download_csv_button(strategy_data.orders, "orders", "download-orders")
+with st.expander("ā Order Status"):
+ st.write(strategy_data.order_status)
+ download_csv_button(strategy_data.order_status, "order_status", "download-order-status")
+if not strategy_data.market_data.empty:
+ with st.expander("š± Market Data"):
+ st.write(strategy_data.market_data)
+ download_csv_button(strategy_data.market_data, "market_data", "download-market-data")
+if strategy_data.position_executor is not None and not strategy_data.position_executor.empty:
+ with st.expander("š¤ Position executor"):
+ st.write(strategy_data.position_executor)
+ download_csv_button(strategy_data.position_executor, "position_executor", "download-position-executor")
diff --git a/utils/data_manipulation.py b/utils/data_manipulation.py
index dcfc404..5fbaa01 100644
--- a/utils/data_manipulation.py
+++ b/utils/data_manipulation.py
@@ -1,6 +1,7 @@
import datetime
from dataclasses import dataclass
import pandas as pd
+import numpy as np
@dataclass
@@ -19,28 +20,59 @@ class StrategyData:
return None
def get_strategy_summary(self):
+ columns_dict = {"strategy": "Strategy",
+ "market": "Exchange",
+ "symbol": "Trading Pair",
+ "order_id_count": "# Trades",
+ "total_positions": "# Positions",
+ "volume_sum": "Volume",
+ "TAKE_PROFIT": "# TP",
+ "STOP_LOSS": "# SL",
+ "TRAILING_STOP": "# TSL",
+ "TIME_LIMIT": "# TL",
+ "net_realized_pnl_full_series": "PnL Over Time",
+ "net_realized_pnl_last": "Realized PnL"}
+
def full_series(series):
return list(series)
- strategy_data = self.trade_fill.copy()
- strategy_data["volume"] = strategy_data["amount"] * strategy_data["price"]
- strategy_summary = strategy_data.groupby(["strategy", "market", "symbol"]).agg({"order_id": "count",
- "volume": "sum",
- "net_realized_pnl": [full_series,
- "last"]}).reset_index()
- strategy_summary.columns = [f"{col[0]}_{col[1]}" if isinstance(col, tuple) and col[1] is not None else col for col in strategy_summary.columns]
- strategy_summary.rename(columns={"strategy_": "Strategy",
- "market_": "Exchange",
- "symbol_": "Trading Pair",
- "order_id_count": "# Trades",
- "volume_sum": "Volume",
- "net_realized_pnl_full_series": "PnL Over Time",
- "net_realized_pnl_last": "Realized PnL"}, inplace=True)
+ # Get trade fill data
+ trade_fill_data = self.trade_fill.copy()
+ trade_fill_data["volume"] = trade_fill_data["amount"] * trade_fill_data["price"]
+ grouped_trade_fill = trade_fill_data.groupby(["strategy", "market", "symbol"]
+ ).agg({"order_id": "count",
+ "volume": "sum",
+ "net_realized_pnl": [full_series,
+ "last"]}).reset_index()
+ grouped_trade_fill.columns = [f"{col[0]}_{col[1]}" if len(col[1]) > 0 else col[0] for col in grouped_trade_fill.columns]
+
+ # Get position executor data
+ if self.position_executor is not None:
+ position_executor_data = self.position_executor.copy()
+ grouped_executors = position_executor_data.groupby(["exchange", "trading_pair", "controller_name", "close_type"]).agg(metric_count=("close_type", "count")).reset_index()
+ index_cols = ["exchange", "trading_pair", "controller_name"]
+ pivot_executors = pd.pivot_table(grouped_executors, values="metric_count", index=index_cols, columns="close_type").reset_index()
+ result_cols = ["TAKE_PROFIT", "STOP_LOSS", "TRAILING_STOP", "TIME_LIMIT"]
+ pivot_executors = pivot_executors.reindex(columns=index_cols + result_cols, fill_value=0)
+ pivot_executors["total_positions"] = pivot_executors[result_cols].sum(axis=1)
+ strategy_summary = grouped_trade_fill.merge(pivot_executors, left_on=["market", "symbol"],
+ right_on=["exchange", "trading_pair"],
+ how="left")
+ strategy_summary.drop(columns=["exchange", "trading_pair"], inplace=True)
+ else:
+ strategy_summary = grouped_trade_fill.copy()
+ strategy_summary["TAKE_PROFIT"] = np.nan
+ strategy_summary["STOP_LOSS"] = np.nan
+ strategy_summary["TRAILING_STOP"] = np.nan
+ strategy_summary["TIME_LIMIT"] = np.nan
+ strategy_summary["total_positions"] = np.nan
+
+ strategy_summary.rename(columns=columns_dict, inplace=True)
strategy_summary.sort_values(["Realized PnL"], ascending=True, inplace=True)
strategy_summary["Explore"] = False
- column_names = list(strategy_summary.columns)
- column_names.insert(0, column_names.pop())
- strategy_summary = strategy_summary[column_names]
+ sorted_cols = ["Explore", "Strategy", "Exchange", "Trading Pair", "# Trades", "Volume", "# Positions",
+ "# TP", "# SL", "# TSL", "# TL", "PnL Over Time", "Realized PnL"]
+ strategy_summary = strategy_summary.reindex(columns=sorted_cols, fill_value=0)
return strategy_summary
def get_single_market_strategy_data(self, exchange: str, trading_pair: str):
diff --git a/utils/database_manager.py b/utils/database_manager.py
index ccd237c..f6aa8b3 100644
--- a/utils/database_manager.py
+++ b/utils/database_manager.py
@@ -13,7 +13,6 @@ class DatabaseManager:
self.db_name = db_name
# TODO: Create db path for all types of db
self.db_path = f'sqlite:///{os.path.join(db_name)}'
- self.executors_path = executors_path
self.engine = create_engine(self.db_path, connect_args={'check_same_thread': False})
self.session_maker = sessionmaker(bind=self.engine)
@@ -131,6 +130,18 @@ class DatabaseManager:
query += f" WHERE {' AND '.join(conditions)}"
return query
+ @staticmethod
+ def _get_position_executor_query(start_date=None, end_date=None):
+ query = "SELECT * FROM PositionExecutors"
+ conditions = []
+ if start_date:
+ conditions.append(f"timestamp >= '{start_date}'")
+ if end_date:
+ conditions.append(f"timestamp <= '{end_date}'")
+ if conditions:
+ query += f" WHERE {' AND '.join(conditions)}"
+ return query
+
def get_orders(self, config_file_path=None, start_date=None, end_date=None):
with self.session_maker() as session:
query = self._get_orders_query(config_file_path, start_date, end_date)
@@ -183,16 +194,10 @@ class DatabaseManager:
return market_data
def get_position_executor_data(self, start_date=None, end_date=None) -> pd.DataFrame:
- df = pd.DataFrame()
- files = [file for file in os.listdir(self.executors_path) if ".csv" in file and file != "trades_market_making_.csv"]
- for file in files:
- df0 = pd.read_csv(f"{self.executors_path}/{file}")
- df = pd.concat([df, df0])
- df["datetime"] = pd.to_datetime(df["timestamp"], unit="s")
- if start_date:
- df = df[df["datetime"] >= start_date]
- if end_date:
- df = df[df["datetime"] <= end_date]
- return df
-
-
+ with self.session_maker() as session:
+ query = self._get_position_executor_query(start_date, end_date)
+ position_executor = pd.read_sql_query(text(query), session.connection())
+ position_executor.set_index("timestamp", inplace=True)
+ position_executor["datetime"] = pd.to_datetime(position_executor.index, unit="s")
+ position_executor["level"] = position_executor["order_level"].apply(lambda x: x.split("_")[1])
+ return position_executor
diff --git a/utils/graphs.py b/utils/graphs.py
index f090978..608e1e0 100644
--- a/utils/graphs.py
+++ b/utils/graphs.py
@@ -1,7 +1,9 @@
import pandas as pd
from plotly.subplots import make_subplots
+import plotly.express as px
import pandas_ta as ta # noqa: F401
import streamlit as st
+from typing import Union
from utils.data_manipulation import StrategyData, SingleMarketStrategyData
from quants_lab.strategy.strategy_analysis import StrategyAnalysis
@@ -10,11 +12,14 @@ import plotly.graph_objs as go
BULLISH_COLOR = "rgba(97, 199, 102, 0.9)"
BEARISH_COLOR = "rgba(255, 102, 90, 0.9)"
FEE_COLOR = "rgba(51, 0, 51, 0.9)"
+MIN_INTERVAL_RESOLUTION = "1m"
+
class CandlesGraph:
- def __init__(self, candles_df: pd.DataFrame, show_volume=True, extra_rows=1):
+ def __init__(self, candles_df: pd.DataFrame, line_mode=False, show_volume=True, extra_rows=1):
self.candles_df = candles_df
self.show_volume = show_volume
+ self.line_mode = line_mode
rows, heights = self.get_n_rows_and_heights(extra_rows)
self.rows = rows
specs = [[{"secondary_y": True}]] * rows
@@ -39,17 +44,37 @@ class CandlesGraph:
return self.base_figure
def add_candles_graph(self):
- self.base_figure.add_trace(
- go.Candlestick(
- x=self.candles_df.index,
- open=self.candles_df['open'],
- high=self.candles_df['high'],
- low=self.candles_df['low'],
- close=self.candles_df['close'],
- name="OHLC"
- ),
- row=1, col=1,
- )
+ if self.line_mode:
+ self.base_figure.add_trace(
+ go.Scatter(x=self.candles_df.index,
+ y=self.candles_df['close'],
+ name="Close",
+ mode='lines',
+ line=dict(color='blue')),
+ row=1, col=1,
+ )
+ else:
+ hover_text = []
+ for i in range(len(self.candles_df)):
+ hover_text.append(
+ f"Open: {self.candles_df['open'][i]}
"
+ f"High: {self.candles_df['high'][i]}
"
+ f"Low: {self.candles_df['low'][i]}
"
+ f"Close: {self.candles_df['close'][i]}
"
+ )
+ self.base_figure.add_trace(
+ go.Candlestick(
+ x=self.candles_df.index,
+ open=self.candles_df['open'],
+ high=self.candles_df['high'],
+ low=self.candles_df['low'],
+ close=self.candles_df['close'],
+ name="OHLC",
+ hoverinfo="text",
+ hovertext=hover_text
+ ),
+ row=1, col=1,
+ )
def add_buy_trades(self, orders_data: pd.DataFrame):
self.base_figure.add_trace(
@@ -64,7 +89,9 @@ class CandlesGraph:
size=12,
line=dict(color='black', width=1),
opacity=0.7,
- )),
+ ),
+ hoverinfo="text",
+ hovertext=orders_data["price"].apply(lambda x: f"Buy Order: {x}
")),
row=1, col=1,
)
@@ -79,7 +106,9 @@ class CandlesGraph:
color='red',
size=12,
line=dict(color='black', width=1),
- opacity=0.7, )),
+ opacity=0.7,),
+ hoverinfo="text",
+ hovertext=orders_data["price"].apply(lambda x: f"Sell Order: {x}
")),
row=1, col=1,
)
@@ -206,6 +235,33 @@ class CandlesGraph:
)
self.base_figure.update_yaxes(title_text='PNL', row=row, col=1)
+ def add_positions(self, position_executor_data: pd.DataFrame, row=1):
+ position_executor_data["close_datetime"] = pd.to_datetime(position_executor_data["close_timestamp"], unit="s")
+ i = 1
+ for index, rown in position_executor_data.iterrows():
+ i += 1
+ self.base_figure.add_trace(go.Scatter(name=f"Position {index}",
+ x=[rown.datetime, rown.close_datetime],
+ y=[rown.entry_price, rown.close_price],
+ mode="lines",
+ line=dict(color="lightgreen" if rown.net_pnl_quote > 0 else "red"),
+ hoverinfo="text",
+ hovertext=f"Position N°: {i}
"
+ f"Datetime: {rown.datetime}
"
+ f"Close datetime: {rown.close_datetime}
"
+ f"Side: {rown.side}
"
+ f"Entry price: {rown.entry_price}
"
+ f"Close price: {rown.close_price}
"
+ f"Close type: {rown.close_type}
"
+ f"Stop Loss: {100 * rown.sl:.2f}%
"
+ f"Take Profit: {100 * rown.tp:.2f}%
"
+ f"Time Limit: {100 * rown.tl:.2f}
"
+ f"Open Order Type: {rown.open_order_type}
"
+ f"Leverage: {rown.leverage}
"
+ f"Controller name: {rown.controller_name}
",
+ showlegend=False),
+ row=row, col=1)
+
def update_layout(self):
self.base_figure.update_layout(
title={
@@ -326,3 +382,204 @@ class BacktestingGraphs:
strategy_analysis.create_base_figure(volume=add_volume, positions=add_positions, trade_pnl=add_pnl)
st.plotly_chart(strategy_analysis.figure(), use_container_width=True)
return metrics_container
+
+
+class PerformanceGraphs:
+ BULLISH_COLOR = "rgba(97, 199, 102, 0.9)"
+ BEARISH_COLOR = "rgba(255, 102, 90, 0.9)"
+ FEE_COLOR = "rgba(51, 0, 51, 0.9)"
+
+ def __init__(self, strategy_data: Union[StrategyData, SingleMarketStrategyData]):
+ self.strategy_data = strategy_data
+
+ @property
+ def has_summary_table(self):
+ if isinstance(self.strategy_data, StrategyData):
+ return self.strategy_data.strategy_summary is not None
+ else:
+ return False
+
+ @property
+ def has_position_executor_summary(self):
+ if isinstance(self.strategy_data, StrategyData):
+ return self.strategy_data.position_executor is not None
+ else:
+ return False
+
+ def strategy_summary_table(self):
+ summary = st.data_editor(self.strategy_data.strategy_summary,
+ column_config={"PnL Over Time": st.column_config.LineChartColumn("PnL Over Time",
+ y_min=0,
+ y_max=5000),
+ "Explore": st.column_config.CheckboxColumn(required=True)
+ },
+ use_container_width=True,
+ hide_index=True
+ )
+ selected_rows = summary[summary.Explore]
+ if len(selected_rows) > 0:
+ return selected_rows
+ else:
+ return None
+
+ def summary_chart(self):
+ fig = px.bar(self.strategy_data.strategy_summary, x="Trading Pair", y="Realized PnL", color="Exchange")
+ fig.update_traces(width=min(1.0, 0.1 * len(self.strategy_data.strategy_summary)))
+ return fig
+
+ def pnl_over_time(self):
+ df = self.strategy_data.trade_fill.copy()
+ df.reset_index(drop=True, inplace=True)
+ df_above = df[df['net_realized_pnl'] >= 0]
+ df_below = df[df['net_realized_pnl'] < 0]
+
+ fig = go.Figure()
+ fig.add_trace(go.Bar(name="Cum Realized PnL",
+ x=df_above.index,
+ y=df_above["net_realized_pnl"],
+ marker_color=BULLISH_COLOR,
+ # hoverdq
+ showlegend=False))
+ fig.add_trace(go.Bar(name="Cum Realized PnL",
+ x=df_below.index,
+ y=df_below["net_realized_pnl"],
+ marker_color=BEARISH_COLOR,
+ showlegend=False))
+ fig.update_layout(title=dict(
+ text='Cummulative PnL', # Your title text
+ x=0.43,
+ y=0.95,
+ ),
+ plot_bgcolor='rgba(0,0,0,0)',
+ paper_bgcolor='rgba(0,0,0,0)')
+ return fig
+
+ def intraday_performance(self):
+ df = self.strategy_data.trade_fill.copy()
+
+ def hr2angle(hr):
+ return (hr * 15) % 360
+
+ def hr_str(hr):
+ # Normalize hr to be between 1 and 12
+ hr_string = str(((hr - 1) % 12) + 1)
+ suffix = ' AM' if (hr % 24) < 12 else ' PM'
+ return hr_string + suffix
+
+ df["hour"] = df["timestamp"].dt.hour
+ realized_pnl_per_hour = df.groupby("hour")[["realized_pnl", "quote_volume"]].sum().reset_index()
+ fig = go.Figure()
+ fig.add_trace(go.Barpolar(
+ name="Profits",
+ r=realized_pnl_per_hour["quote_volume"],
+ theta=realized_pnl_per_hour["hour"] * 15,
+ marker=dict(
+ color=realized_pnl_per_hour["realized_pnl"],
+ colorscale="RdYlGn",
+ cmin=-(abs(realized_pnl_per_hour["realized_pnl"]).max()),
+ cmid=0.0,
+ cmax=(abs(realized_pnl_per_hour["realized_pnl"]).max()),
+ colorbar=dict(
+ title='Realized PnL',
+ x=0,
+ y=-0.5,
+ xanchor='left',
+ yanchor='bottom',
+ orientation='h'
+ )
+ )))
+ fig.update_layout(
+ polar=dict(
+ radialaxis=dict(
+ visible=True,
+ showline=False,
+ ),
+ angularaxis=dict(
+ rotation=90,
+ direction="clockwise",
+ tickvals=[hr2angle(hr) for hr in range(24)],
+ ticktext=[hr_str(hr) for hr in range(24)],
+ ),
+ bgcolor='rgba(255, 255, 255, 0)',
+
+ ),
+ legend=dict(
+ orientation="h",
+ x=0.5,
+ y=1.08,
+ xanchor="center",
+ yanchor="bottom"
+ ),
+ title=dict(
+ text='Intraday Performance',
+ x=0.5,
+ y=0.93,
+ xanchor="center",
+ yanchor="bottom"
+ ),
+ )
+ return fig
+
+ def returns_histogram(self):
+ df = self.strategy_data.trade_fill.copy()
+ fig = go.Figure()
+ fig.add_trace(go.Histogram(name="Losses",
+ x=df.loc[df["realized_pnl"] < 0, "realized_pnl"],
+ marker_color=BEARISH_COLOR))
+ fig.add_trace(go.Histogram(name="Profits",
+ x=df.loc[df["realized_pnl"] > 0, "realized_pnl"],
+ marker_color=BULLISH_COLOR))
+ fig.update_layout(
+ title=dict(
+ text='Returns Distribution',
+ x=0.5,
+ xanchor="center",
+ ),
+ legend=dict(
+ orientation="h",
+ yanchor="bottom",
+ y=1.02,
+ xanchor="center",
+ x=.48
+ ))
+ return fig
+
+ def position_executor_summary_sunburst(self):
+ if self.strategy_data.position_executor is not None:
+ df = self.strategy_data.position_executor.copy()
+ grouped_df = df.groupby(["trading_pair", "side", "close_type"]).size().reset_index(name="count")
+
+ fig = px.sunburst(grouped_df,
+ path=['trading_pair', 'side', 'close_type'],
+ values="count",
+ color_continuous_scale='RdBu',
+ color_continuous_midpoint=0)
+
+ fig.update_layout(
+ title=dict(
+ text='Position Executor Summary',
+ x=0.5,
+ xanchor="center",
+ ),
+ legend=dict(
+ orientation="h",
+ yanchor="bottom",
+ y=1.02,
+ xanchor="center",
+ x=.48
+ )
+ )
+ return fig
+ else:
+ return None
+
+ def candles_graph(self, candles: pd.DataFrame, interval="5m", show_volume=False, extra_rows=2):
+ line_mode = interval == MIN_INTERVAL_RESOLUTION
+ cg = CandlesGraph(candles, show_volume=show_volume, line_mode=line_mode, extra_rows=extra_rows)
+ cg.add_buy_trades(self.strategy_data.buys)
+ cg.add_sell_trades(self.strategy_data.sells)
+ cg.add_pnl(self.strategy_data, row=2)
+ cg.add_quote_inventory_change(self.strategy_data, row=3)
+ if self.strategy_data.position_executor is not None:
+ cg.add_positions(self.strategy_data.position_executor, row=1)
+ return cg.figure()
diff --git a/utils/os_utils.py b/utils/os_utils.py
index c5cd6e2..5310e42 100644
--- a/utils/os_utils.py
+++ b/utils/os_utils.py
@@ -121,6 +121,21 @@ def get_bots_data_paths():
return data_sources
+def get_databases():
+ databases = {}
+ bots_data_paths = get_bots_data_paths()
+ for source_name, source_path in bots_data_paths.items():
+ sqlite_files = {}
+ for db_name in os.listdir(source_path):
+ if db_name.endswith(".sqlite"):
+ sqlite_files[db_name] = os.path.join(source_path, db_name)
+ databases[source_name] = sqlite_files
+ if len(databases) > 0:
+ return {key: value for key, value in databases.items() if value}
+ else:
+ return None
+
+
def get_function_from_file(file_path: str, function_name: str):
# Create a module specification from the file path and load it
spec = importlib.util.spec_from_file_location("module.name", file_path)
diff --git a/utils/st_utils.py b/utils/st_utils.py
index 189f07b..a89dcf5 100644
--- a/utils/st_utils.py
+++ b/utils/st_utils.py
@@ -1,10 +1,12 @@
import os.path
+import pandas as pd
from pathlib import Path
import inspect
import streamlit as st
from st_pages import add_page_title
+from utils.database_manager import DatabaseManager
def initialize_st_page(title: str, icon: str, layout="wide", initial_sidebar_state="collapsed"):
st.set_page_config(
@@ -21,3 +23,56 @@ def initialize_st_page(title: str, icon: str, layout="wide", initial_sidebar_sta
readme_path = current_directory / "README.md"
with st.expander("About This Page"):
st.write(readme_path.read_text())
+
+
+def download_csv_button(df: pd.DataFrame, filename: str, key: str):
+ csv = df.to_csv(index=False).encode('utf-8')
+ return st.download_button(
+ label="Download CSV",
+ data=csv,
+ file_name=f"{filename}.csv",
+ mime="text/csv",
+ key=key
+ )
+
+
+def style_metric_cards(
+ background_color: str = "rgba(255, 255, 255, 0)",
+ border_size_px: int = 1,
+ border_color: str = "rgba(255, 255, 255, 0.3)",
+ border_radius_px: int = 5,
+ border_left_color: str = "rgba(255, 255, 255, 0.5)",
+ box_shadow: bool = True,
+):
+
+ box_shadow_str = (
+ "box-shadow: 0 0.15rem 1.75rem 0 rgba(58, 59, 69, 0.15) !important;"
+ if box_shadow
+ else "box-shadow: none !important;"
+ )
+ st.markdown(
+ f"""
+
+ """,
+ unsafe_allow_html=True,
+ )
+
+
+def db_error_message(db: DatabaseManager, error_message: str):
+ container = st.container()
+ with container:
+ st.warning(error_message)
+ with st.expander("DB Status"):
+ status_df = pd.DataFrame([db.status]).transpose().reset_index()
+ status_df.columns = ["Attribute", "Value"]
+ st.table(status_df)
+ return container