import json import logging from pathlib import Path import typer from gpt_engineer.ai import AI, fallback_model from gpt_engineer.collect import collect_learnings from gpt_engineer.db import DB, DBs, archive from gpt_engineer.learning import collect_consent from gpt_engineer.steps import STEPS, Config as StepsConfig app = typer.Typer() @app.command() def main( project_path: str = typer.Argument("example", help="path"), model: str = typer.Argument("gpt-4", help="model id string"), temperature: float = 0.1, steps_config: StepsConfig = typer.Option( StepsConfig.DEFAULT, "--steps", "-s", help="decide which steps to run" ), verbose: bool = typer.Option(False, "--verbose", "-v"), ): logging.basicConfig(level=logging.DEBUG if verbose else logging.INFO) model = fallback_model(model) ai = AI( model=model, temperature=temperature, ) input_path = Path(project_path).absolute() memory_path = input_path / "memory" workspace_path = input_path / "workspace" archive_path = input_path / "archive" dbs = DBs( memory=DB(memory_path), logs=DB(memory_path / "logs"), input=DB(input_path), workspace=DB(workspace_path), preprompts=DB(Path(__file__).parent / "preprompts"), archive=DB(archive_path), ) if steps_config not in [ StepsConfig.EXECUTE_ONLY, StepsConfig.USE_FEEDBACK, StepsConfig.EVALUATE, ]: archive(dbs) steps = STEPS[steps_config] for step in steps: messages = step(ai, dbs) dbs.logs[step.__name__] = json.dumps(messages) if collect_consent(): collect_learnings(model, temperature, steps, dbs) dbs.logs["token_usage"] = ai.format_token_usage_log() if __name__ == "__main__": app()