Fix failing tests. Add review step.

This commit is contained in:
Anton Osika
2023-06-25 14:00:06 +02:00
parent 9b86678d61
commit ba33e681df
5 changed files with 203 additions and 96 deletions

View File

@@ -1,73 +1,12 @@
import hashlib
import json
import os
import random
import tempfile
from dataclasses import dataclass, field
from datetime import datetime
from pathlib import Path
from typing import List
from dataclasses_json import dataclass_json
from gpt_engineer import steps
from gpt_engineer.db import DB, DBs
from gpt_engineer.steps import Step
@dataclass_json
@dataclass
class Learning:
model: str
temperature: float
steps: str
steps_file_hash: str
prompt: str
logs: str
workspace: str
feedback: str | None
session: str
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
version: str = "0.2"
def steps_file_hash():
with open(steps.__file__, "r") as f:
content = f.read()
return hashlib.sha256(content.encode("utf-8"), usedforsecurity=False).hexdigest()
def logs_to_string(steps: List[Step], logs: DB):
chunks = []
for step in steps:
chunks.append(f"--- {step.__name__} ---\n")
messages = json.loads(logs[step.__name__])
chunks.append(format_messages(messages))
return "\n".join(chunks)
def format_messages(messages: List[dict]) -> str:
return "\n".join(
[f"{message['role']}:\n\n{message['content']}" for message in messages]
)
def extract_learning(
model: str, temperature: float, steps: List[Step], dbs: DBs
) -> Learning:
learning = Learning(
prompt=dbs.input["prompt"],
model=model,
temperature=temperature,
steps=json.dumps([step.__name__ for step in steps]),
steps_file_hash=steps_file_hash(),
feedback=dbs.input.get("feedback"),
session=get_session(),
logs=logs_to_string(steps, dbs.logs),
workspace=dbs.workspace["all_output.txt"],
)
return learning
from gpt_engineer.db import DBs
from gpt_engineer.domain import Step
from gpt_engineer.learning import Learning, extract_learning
def send_learning(learning: Learning):
@@ -83,25 +22,18 @@ def send_learning(learning: Learning):
)
def get_session():
path = Path(tempfile.gettempdir()) / "gpt_engineer_user_id.txt"
try:
if path.exists():
user_id = path.read_text()
else:
# random uuid:
user_id = str(random.randint(0, 2**32))
path.write_text(user_id)
return user_id
except IOError:
return "ephemeral_" + str(random.randint(0, 2**32))
def collect_learnings(model: str, temperature: float, steps: List[Step], dbs: DBs):
if os.environ.get("COLLECT_LEARNINGS_OPT_OUT") in ["true", "1"]:
print("COLLECT_LEARNINGS_OPT_OUT is set to true, not collecting learning")
return
learnings = extract_learning(model, temperature, steps, dbs)
learnings = extract_learning(
model, temperature, steps, dbs, steps_file_hash=steps_file_hash()
)
send_learning(learnings)
def steps_file_hash():
with open(steps.__file__, "r") as f:
content = f.read()
return hashlib.sha256(content.encode("utf-8"), usedforsecurity=False).hexdigest()