Implemented logging token usage (solves #322) (#438)

* Implemented logging token usage

Token usage is now tracked and logged into memory/logs/token_usage

* Step names are now inferred from function name

* Incorporated Anton's feedback

- Made LogUsage a dataclass
- For token logging, step name is now inferred via inspect module

* Formatted (black/ruff)

* Update gpt_engineer/ai.py

Co-authored-by: Anton Osika <anton.osika@gmail.com>

* formatting

---------

Co-authored-by: Anton Osika <anton.osika@gmail.com>
This commit is contained in:
UmerHA
2023-07-03 21:28:34 +02:00
committed by GitHub
parent 2b8e056d5d
commit 8fd315d264
4 changed files with 112 additions and 14 deletions

View File

@@ -2,25 +2,54 @@ from __future__ import annotations
import logging import logging
from dataclasses import dataclass
from typing import Dict, List from typing import Dict, List
import openai import openai
import tiktoken
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@dataclass
class TokenUsage:
step_name: str
in_step_prompt_tokens: int
in_step_completion_tokens: int
in_step_total_tokens: int
total_prompt_tokens: int
total_completion_tokens: int
total_tokens: int
class AI: class AI:
def __init__(self, model="gpt-4", temperature=0.1): def __init__(self, model="gpt-4", temperature=0.1):
self.temperature = temperature self.temperature = temperature
self.model = model self.model = model
def start(self, system, user): # initialize token usage log
self.cumulative_prompt_tokens = 0
self.cumulative_completion_tokens = 0
self.cumulative_total_tokens = 0
self.token_usage_log = []
try:
self.tokenizer = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug(
f"Tiktoken encoder for model {model} not found. Using "
"cl100k_base encoder instead. The results may therefore be "
"inaccurate and should only be used as estimate."
)
self.tokenizer = tiktoken.get_encoding("cl100k_base")
def start(self, system, user, step_name):
messages = [ messages = [
{"role": "system", "content": system}, {"role": "system", "content": system},
{"role": "user", "content": user}, {"role": "user", "content": user},
] ]
return self.next(messages) return self.next(messages, step_name=step_name)
def fsystem(self, msg): def fsystem(self, msg):
return {"role": "system", "content": msg} return {"role": "system", "content": msg}
@@ -31,7 +60,7 @@ class AI:
def fassistant(self, msg): def fassistant(self, msg):
return {"role": "assistant", "content": msg} return {"role": "assistant", "content": msg}
def next(self, messages: List[Dict[str, str]], prompt=None): def next(self, messages: List[Dict[str, str]], prompt=None, *, step_name=None):
if prompt: if prompt:
messages += [{"role": "user", "content": prompt}] messages += [{"role": "user", "content": prompt}]
@@ -52,8 +81,65 @@ class AI:
print() print()
messages += [{"role": "assistant", "content": "".join(chat)}] messages += [{"role": "assistant", "content": "".join(chat)}]
logger.debug(f"Chat completion finished: {messages}") logger.debug(f"Chat completion finished: {messages}")
self.update_token_usage_log(
messages=messages, answer="".join(chat), step_name=step_name
)
return messages return messages
def update_token_usage_log(self, messages, answer, step_name):
prompt_tokens = self.num_tokens_from_messages(messages)
completion_tokens = self.num_tokens(answer)
total_tokens = prompt_tokens + completion_tokens
self.cumulative_prompt_tokens += prompt_tokens
self.cumulative_completion_tokens += completion_tokens
self.cumulative_total_tokens += total_tokens
self.token_usage_log.append(
TokenUsage(
step_name=step_name,
in_step_prompt_tokens=prompt_tokens,
in_step_completion_tokens=completion_tokens,
in_step_total_tokens=total_tokens,
total_prompt_tokens=self.cumulative_prompt_tokens,
total_completion_tokens=self.cumulative_completion_tokens,
total_tokens=self.cumulative_total_tokens,
)
)
def format_token_usage_log(self):
result = "step_name,"
result += "prompt_tokens_in_step,completion_tokens_in_step,total_tokens_in_step"
result += ",total_prompt_tokens,total_completion_tokens,total_tokens\n"
for log in self.token_usage_log:
result += log.step_name + ","
result += str(log.in_step_prompt_tokens) + ","
result += str(log.in_step_completion_tokens) + ","
result += str(log.in_step_total_tokens) + ","
result += str(log.total_prompt_tokens) + ","
result += str(log.total_completion_tokens) + ","
result += str(log.total_tokens) + "\n"
return result
def num_tokens(self, txt):
return len(self.tokenizer.encode(txt))
def num_tokens_from_messages(self, messages):
"""Returns the number of tokens used by a list of messages."""
n_tokens = 0
for message in messages:
n_tokens += (
4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
)
for key, value in message.items():
n_tokens += self.num_tokens(value)
if key == "name": # if there's a name, the role is omitted
n_tokens += -1 # role is always required and always 1 token
n_tokens += 2 # every reply is primed with <im_start>assistant
return n_tokens
def fallback_model(model: str) -> str: def fallback_model(model: str) -> str:
try: try:

View File

@@ -61,6 +61,8 @@ def main(
if collect_consent(): if collect_consent():
collect_learnings(model, temperature, steps, dbs) collect_learnings(model, temperature, steps, dbs)
dbs.logs["token_usage"] = ai.format_token_usage_log()
if __name__ == "__main__": if __name__ == "__main__":
app() app()

View File

@@ -1,3 +1,4 @@
import inspect
import json import json
import re import re
import subprocess import subprocess
@@ -35,12 +36,17 @@ def get_prompt(dbs: DBs) -> str:
return dbs.input["prompt"] return dbs.input["prompt"]
def curr_fn() -> str:
"""Get the name of the current function"""
return inspect.stack()[1].function
# All steps below have the signature Step # All steps below have the signature Step
def simple_gen(ai: AI, dbs: DBs) -> List[dict]: def simple_gen(ai: AI, dbs: DBs) -> List[dict]:
"""Run the AI on the main prompt and save the results""" """Run the AI on the main prompt and save the results"""
messages = ai.start(setup_sys_prompt(dbs), get_prompt(dbs)) messages = ai.start(setup_sys_prompt(dbs), get_prompt(dbs), step_name=curr_fn())
to_files(messages[-1]["content"], dbs.workspace) to_files(messages[-1]["content"], dbs.workspace)
return messages return messages
@@ -52,7 +58,7 @@ def clarify(ai: AI, dbs: DBs) -> List[dict]:
messages = [ai.fsystem(dbs.preprompts["qa"])] messages = [ai.fsystem(dbs.preprompts["qa"])]
user_input = get_prompt(dbs) user_input = get_prompt(dbs)
while True: while True:
messages = ai.next(messages, user_input) messages = ai.next(messages, user_input, step_name=curr_fn())
if messages[-1]["content"].strip() == "Nothing more to clarify.": if messages[-1]["content"].strip() == "Nothing more to clarify.":
break break
@@ -71,6 +77,7 @@ def clarify(ai: AI, dbs: DBs) -> List[dict]:
messages = ai.next( messages = ai.next(
messages, messages,
"Make your own assumptions and state them explicitly before starting", "Make your own assumptions and state them explicitly before starting",
step_name=curr_fn(),
) )
print() print()
return messages return messages
@@ -97,7 +104,7 @@ def gen_spec(ai: AI, dbs: DBs) -> List[dict]:
ai.fsystem(f"Instructions: {dbs.input['prompt']}"), ai.fsystem(f"Instructions: {dbs.input['prompt']}"),
] ]
messages = ai.next(messages, dbs.preprompts["spec"]) messages = ai.next(messages, dbs.preprompts["spec"], step_name=curr_fn())
dbs.memory["specification"] = messages[-1]["content"] dbs.memory["specification"] = messages[-1]["content"]
@@ -108,7 +115,7 @@ def respec(ai: AI, dbs: DBs) -> List[dict]:
messages = json.loads(dbs.logs[gen_spec.__name__]) messages = json.loads(dbs.logs[gen_spec.__name__])
messages += [ai.fsystem(dbs.preprompts["respec"])] messages += [ai.fsystem(dbs.preprompts["respec"])]
messages = ai.next(messages) messages = ai.next(messages, step_name=curr_fn())
messages = ai.next( messages = ai.next(
messages, messages,
( (
@@ -119,6 +126,7 @@ def respec(ai: AI, dbs: DBs) -> List[dict]:
"If you are satisfied with the specification, just write out the " "If you are satisfied with the specification, just write out the "
"specification word by word again." "specification word by word again."
), ),
step_name=curr_fn(),
) )
dbs.memory["specification"] = messages[-1]["content"] dbs.memory["specification"] = messages[-1]["content"]
@@ -135,7 +143,7 @@ def gen_unit_tests(ai: AI, dbs: DBs) -> List[dict]:
ai.fuser(f"Specification:\n\n{dbs.memory['specification']}"), ai.fuser(f"Specification:\n\n{dbs.memory['specification']}"),
] ]
messages = ai.next(messages, dbs.preprompts["unit_tests"]) messages = ai.next(messages, dbs.preprompts["unit_tests"], step_name=curr_fn())
dbs.memory["unit_tests"] = messages[-1]["content"] dbs.memory["unit_tests"] = messages[-1]["content"]
to_files(dbs.memory["unit_tests"], dbs.workspace) to_files(dbs.memory["unit_tests"], dbs.workspace)
@@ -145,13 +153,12 @@ def gen_unit_tests(ai: AI, dbs: DBs) -> List[dict]:
def gen_clarified_code(ai: AI, dbs: DBs) -> List[dict]: def gen_clarified_code(ai: AI, dbs: DBs) -> List[dict]:
"""Takes clarification and generates code""" """Takes clarification and generates code"""
messages = json.loads(dbs.logs[clarify.__name__]) messages = json.loads(dbs.logs[clarify.__name__])
messages = [ messages = [
ai.fsystem(setup_sys_prompt(dbs)), ai.fsystem(setup_sys_prompt(dbs)),
] + messages[1:] ] + messages[1:]
messages = ai.next(messages, dbs.preprompts["use_qa"]) messages = ai.next(messages, dbs.preprompts["use_qa"], step_name=curr_fn())
to_files(messages[-1]["content"], dbs.workspace) to_files(messages[-1]["content"], dbs.workspace)
return messages return messages
@@ -159,14 +166,13 @@ def gen_clarified_code(ai: AI, dbs: DBs) -> List[dict]:
def gen_code(ai: AI, dbs: DBs) -> List[dict]: def gen_code(ai: AI, dbs: DBs) -> List[dict]:
# get the messages from previous step # get the messages from previous step
messages = [ messages = [
ai.fsystem(setup_sys_prompt(dbs)), ai.fsystem(setup_sys_prompt(dbs)),
ai.fuser(f"Instructions: {dbs.input['prompt']}"), ai.fuser(f"Instructions: {dbs.input['prompt']}"),
ai.fuser(f"Specification:\n\n{dbs.memory['specification']}"), ai.fuser(f"Specification:\n\n{dbs.memory['specification']}"),
ai.fuser(f"Unit tests:\n\n{dbs.memory['unit_tests']}"), ai.fuser(f"Unit tests:\n\n{dbs.memory['unit_tests']}"),
] ]
messages = ai.next(messages, dbs.preprompts["use_qa"]) messages = ai.next(messages, dbs.preprompts["use_qa"], step_name=curr_fn())
to_files(messages[-1]["content"], dbs.workspace) to_files(messages[-1]["content"], dbs.workspace)
return messages return messages
@@ -224,6 +230,7 @@ def gen_entrypoint(ai: AI, dbs: DBs) -> List[dict]:
"if necessary.\n" "if necessary.\n"
), ),
user="Information about the codebase:\n\n" + dbs.workspace["all_output.txt"], user="Information about the codebase:\n\n" + dbs.workspace["all_output.txt"],
step_name=curr_fn(),
) )
print() print()
@@ -240,7 +247,7 @@ def use_feedback(ai: AI, dbs: DBs):
ai.fassistant(dbs.workspace["all_output.txt"]), ai.fassistant(dbs.workspace["all_output.txt"]),
ai.fsystem(dbs.preprompts["use_feedback"]), ai.fsystem(dbs.preprompts["use_feedback"]),
] ]
messages = ai.next(messages, dbs.input["feedback"]) messages = ai.next(messages, dbs.input["feedback"], step_name=curr_fn())
to_files(messages[-1]["content"], dbs.workspace) to_files(messages[-1]["content"], dbs.workspace)
return messages return messages
@@ -253,7 +260,9 @@ def fix_code(ai: AI, dbs: DBs):
ai.fuser(code_output), ai.fuser(code_output),
ai.fsystem(dbs.preprompts["fix_code"]), ai.fsystem(dbs.preprompts["fix_code"]),
] ]
messages = ai.next(messages, "Please fix any errors in the code above.") messages = ai.next(
messages, "Please fix any errors in the code above.", step_name=curr_fn()
)
to_files(messages[-1]["content"], dbs.workspace) to_files(messages[-1]["content"], dbs.workspace)
return messages return messages

View File

@@ -19,6 +19,7 @@ dependencies = [
'typer >= 0.3.2', 'typer >= 0.3.2',
'rudder-sdk-python == 2.0.2', 'rudder-sdk-python == 2.0.2',
'dataclasses-json == 0.5.7', 'dataclasses-json == 0.5.7',
'tiktoken',
'tabulate == 0.9.0', 'tabulate == 0.9.0',
] ]