mirror of
https://github.com/aljazceru/gpt-engineer.git
synced 2025-12-17 12:45:26 +01:00
* Implemented logging token usage Token usage is now tracked and logged into memory/logs/token_usage * Step names are now inferred from function name * Incorporated Anton's feedback - Made LogUsage a dataclass - For token logging, step name is now inferred via inspect module * Formatted (black/ruff) * Update gpt_engineer/ai.py Co-authored-by: Anton Osika <anton.osika@gmail.com> * formatting --------- Co-authored-by: Anton Osika <anton.osika@gmail.com>
This commit is contained in:
@@ -2,25 +2,54 @@ from __future__ import annotations
|
||||
|
||||
import logging
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List
|
||||
|
||||
import openai
|
||||
import tiktoken
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TokenUsage:
|
||||
step_name: str
|
||||
in_step_prompt_tokens: int
|
||||
in_step_completion_tokens: int
|
||||
in_step_total_tokens: int
|
||||
total_prompt_tokens: int
|
||||
total_completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class AI:
|
||||
def __init__(self, model="gpt-4", temperature=0.1):
|
||||
self.temperature = temperature
|
||||
self.model = model
|
||||
|
||||
def start(self, system, user):
|
||||
# initialize token usage log
|
||||
self.cumulative_prompt_tokens = 0
|
||||
self.cumulative_completion_tokens = 0
|
||||
self.cumulative_total_tokens = 0
|
||||
self.token_usage_log = []
|
||||
|
||||
try:
|
||||
self.tokenizer = tiktoken.encoding_for_model(model)
|
||||
except KeyError:
|
||||
logger.debug(
|
||||
f"Tiktoken encoder for model {model} not found. Using "
|
||||
"cl100k_base encoder instead. The results may therefore be "
|
||||
"inaccurate and should only be used as estimate."
|
||||
)
|
||||
self.tokenizer = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
def start(self, system, user, step_name):
|
||||
messages = [
|
||||
{"role": "system", "content": system},
|
||||
{"role": "user", "content": user},
|
||||
]
|
||||
|
||||
return self.next(messages)
|
||||
return self.next(messages, step_name=step_name)
|
||||
|
||||
def fsystem(self, msg):
|
||||
return {"role": "system", "content": msg}
|
||||
@@ -31,7 +60,7 @@ class AI:
|
||||
def fassistant(self, msg):
|
||||
return {"role": "assistant", "content": msg}
|
||||
|
||||
def next(self, messages: List[Dict[str, str]], prompt=None):
|
||||
def next(self, messages: List[Dict[str, str]], prompt=None, *, step_name=None):
|
||||
if prompt:
|
||||
messages += [{"role": "user", "content": prompt}]
|
||||
|
||||
@@ -52,8 +81,65 @@ class AI:
|
||||
print()
|
||||
messages += [{"role": "assistant", "content": "".join(chat)}]
|
||||
logger.debug(f"Chat completion finished: {messages}")
|
||||
|
||||
self.update_token_usage_log(
|
||||
messages=messages, answer="".join(chat), step_name=step_name
|
||||
)
|
||||
|
||||
return messages
|
||||
|
||||
def update_token_usage_log(self, messages, answer, step_name):
|
||||
prompt_tokens = self.num_tokens_from_messages(messages)
|
||||
completion_tokens = self.num_tokens(answer)
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
self.cumulative_prompt_tokens += prompt_tokens
|
||||
self.cumulative_completion_tokens += completion_tokens
|
||||
self.cumulative_total_tokens += total_tokens
|
||||
|
||||
self.token_usage_log.append(
|
||||
TokenUsage(
|
||||
step_name=step_name,
|
||||
in_step_prompt_tokens=prompt_tokens,
|
||||
in_step_completion_tokens=completion_tokens,
|
||||
in_step_total_tokens=total_tokens,
|
||||
total_prompt_tokens=self.cumulative_prompt_tokens,
|
||||
total_completion_tokens=self.cumulative_completion_tokens,
|
||||
total_tokens=self.cumulative_total_tokens,
|
||||
)
|
||||
)
|
||||
|
||||
def format_token_usage_log(self):
|
||||
result = "step_name,"
|
||||
result += "prompt_tokens_in_step,completion_tokens_in_step,total_tokens_in_step"
|
||||
result += ",total_prompt_tokens,total_completion_tokens,total_tokens\n"
|
||||
for log in self.token_usage_log:
|
||||
result += log.step_name + ","
|
||||
result += str(log.in_step_prompt_tokens) + ","
|
||||
result += str(log.in_step_completion_tokens) + ","
|
||||
result += str(log.in_step_total_tokens) + ","
|
||||
result += str(log.total_prompt_tokens) + ","
|
||||
result += str(log.total_completion_tokens) + ","
|
||||
result += str(log.total_tokens) + "\n"
|
||||
return result
|
||||
|
||||
def num_tokens(self, txt):
|
||||
return len(self.tokenizer.encode(txt))
|
||||
|
||||
def num_tokens_from_messages(self, messages):
|
||||
"""Returns the number of tokens used by a list of messages."""
|
||||
n_tokens = 0
|
||||
for message in messages:
|
||||
n_tokens += (
|
||||
4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
|
||||
)
|
||||
for key, value in message.items():
|
||||
n_tokens += self.num_tokens(value)
|
||||
if key == "name": # if there's a name, the role is omitted
|
||||
n_tokens += -1 # role is always required and always 1 token
|
||||
n_tokens += 2 # every reply is primed with <im_start>assistant
|
||||
return n_tokens
|
||||
|
||||
|
||||
def fallback_model(model: str) -> str:
|
||||
try:
|
||||
|
||||
Reference in New Issue
Block a user