Langchain integration (#512)

* Added LangChain integration

* Fixed issue created by git checkin process

* Added ':' to characters to remove from end of file path

* Tested initial migration to LangChain, removed comments and logging used for debugging

* Tested initial migration to LangChain, removed comments and logging used for debugging

* Converted camelCase to snake_case

* Turns out we need the exception handling

* Testing Hugging Face Integrations via LangChain

* Added LangChain loadable models

* Renames "qa" prompt to "clarify", since it's used in the "clarify" step, asking for clarification

* Fixed loading model yaml files

* Fixed streaming

* Added modeldir cli option

* Fixed typing

* Fixed interaction with token logging

* Fix spelling + dependency issues + typing

* Fix spelling + tests

* Removed unneeded logging which caused test to fail

* Cleaned up code

* Incorporated feedback

- deleted unnecessary functions & logger.info
- used LangChain ChatLLM instead of LLM to naturally communicate with gpt-4
- deleted loading model from yaml file, as LC doesn't offer this for ChatModels

* Update gpt_engineer/steps.py

Co-authored-by: Anton Osika <anton.osika@gmail.com>

* Incorporated feedback

- Fixed failing test
- Removed parsing complexity by using # type: ignore
- Replace every ocurence of ai.last_message_content with its content

* Fixed test

* Update gpt_engineer/steps.py

---------

Co-authored-by: H <holden.robbins@gmail.com>
Co-authored-by: Anton Osika <anton.osika@gmail.com>
This commit is contained in:
UmerHA
2023-07-23 23:30:09 +02:00
committed by GitHub
parent 07ba335ecf
commit 19a4c10b6e
9 changed files with 132 additions and 92 deletions

View File

@@ -1,13 +1,27 @@
from __future__ import annotations
import json
import logging
from dataclasses import dataclass
from typing import Dict, List
from typing import List, Optional, Union
import openai
import tiktoken
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage,
messages_from_dict,
messages_to_dict,
)
Message = Union[AIMessage, HumanMessage, SystemMessage]
logger = logging.getLogger(__name__)
@@ -23,9 +37,11 @@ class TokenUsage:
class AI:
def __init__(self, model="gpt-4", temperature=0.1):
def __init__(self, model_name="gpt-4", temperature=0.1):
self.temperature = temperature
self.model = model
self.model_name = fallback_model(model_name)
self.llm = create_chat_model(self.model_name, temperature)
self.tokenizer = get_tokenizer(self.model_name)
# initialize token usage log
self.cumulative_prompt_tokens = 0
@@ -33,62 +49,57 @@ class AI:
self.cumulative_total_tokens = 0
self.token_usage_log = []
try:
self.tokenizer = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug(
f"Tiktoken encoder for model {model} not found. Using "
"cl100k_base encoder instead. The results may therefore be "
"inaccurate and should only be used as estimate."
)
self.tokenizer = tiktoken.get_encoding("cl100k_base")
def start(self, system, user, step_name):
messages = [
{"role": "system", "content": system},
{"role": "user", "content": user},
def start(self, system: str, user: str, step_name: str) -> List[Message]:
messages: List[Message] = [
SystemMessage(content=system),
HumanMessage(content=user),
]
return self.next(messages, step_name=step_name)
def fsystem(self, msg):
return {"role": "system", "content": msg}
def fsystem(self, msg: str) -> SystemMessage:
return SystemMessage(content=msg)
def fuser(self, msg):
return {"role": "user", "content": msg}
def fuser(self, msg: str) -> HumanMessage:
return HumanMessage(content=msg)
def fassistant(self, msg):
return {"role": "assistant", "content": msg}
def fassistant(self, msg: str) -> AIMessage:
return AIMessage(content=msg)
def next(self, messages: List[Dict[str, str]], prompt=None, *, step_name=None):
def next(
self,
messages: List[Message],
prompt: Optional[str] = None,
*,
step_name: str,
) -> List[Message]:
if prompt:
messages += [{"role": "user", "content": prompt}]
messages.append(self.fuser(prompt))
logger.debug(f"Creating a new chat completion: {messages}")
response = openai.ChatCompletion.create(
messages=messages,
stream=True,
model=self.model,
temperature=self.temperature,
)
chat = []
for chunk in response:
delta = chunk["choices"][0]["delta"] # type: ignore
msg = delta.get("content", "")
print(msg, end="")
chat.append(msg)
print()
messages += [{"role": "assistant", "content": "".join(chat)}]
callsbacks = [StreamingStdOutCallbackHandler()]
response = self.llm(messages, callbacks=callsbacks) # type: ignore
messages.append(response)
logger.debug(f"Chat completion finished: {messages}")
self.update_token_usage_log(
messages=messages, answer="".join(chat), step_name=step_name
messages=messages, answer=response.content, step_name=step_name
)
return messages
def update_token_usage_log(self, messages, answer, step_name):
@staticmethod
def serialize_messages(messages: List[Message]) -> str:
return json.dumps(messages_to_dict(messages))
@staticmethod
def deserialize_messages(jsondictstr: str) -> List[Message]:
return list(messages_from_dict(json.loads(jsondictstr))) # type: ignore
def update_token_usage_log(
self, messages: List[Message], answer: str, step_name: str
) -> None:
prompt_tokens = self.num_tokens_from_messages(messages)
completion_tokens = self.num_tokens(answer)
total_tokens = prompt_tokens + completion_tokens
@@ -109,7 +120,7 @@ class AI:
)
)
def format_token_usage_log(self):
def format_token_usage_log(self) -> str:
result = "step_name,"
result += "prompt_tokens_in_step,completion_tokens_in_step,total_tokens_in_step"
result += ",total_prompt_tokens,total_completion_tokens,total_tokens\n"
@@ -123,20 +134,17 @@ class AI:
result += str(log.total_tokens) + "\n"
return result
def num_tokens(self, txt):
def num_tokens(self, txt: str) -> int:
return len(self.tokenizer.encode(txt))
def num_tokens_from_messages(self, messages):
def num_tokens_from_messages(self, messages: List[Message]) -> int:
"""Returns the number of tokens used by a list of messages."""
n_tokens = 0
for message in messages:
n_tokens += (
4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
)
for key, value in message.items():
n_tokens += self.num_tokens(value)
if key == "name": # if there's a name, the role is omitted
n_tokens += -1 # role is always required and always 1 token
n_tokens += self.num_tokens(message.content)
n_tokens += 2 # every reply is primed with <im_start>assistant
return n_tokens
@@ -151,4 +159,39 @@ def fallback_model(model: str) -> str:
"to gpt-3.5-turbo. Sign up for the GPT-4 wait list here: "
"https://openai.com/waitlist/gpt-4-api\n"
)
return "gpt-3.5-turbo-16k"
return "gpt-3.5-turbo"
def create_chat_model(model: str, temperature) -> BaseChatModel:
if model == "gpt-4":
return ChatOpenAI(
model="gpt-4",
temperature=temperature,
streaming=True,
client=openai.ChatCompletion,
)
elif model == "gpt-3.5-turbo":
return ChatOpenAI(
model="gpt-3.5-turbo",
temperature=temperature,
streaming=True,
client=openai.ChatCompletion,
)
else:
raise ValueError(f"Model {model} is not supported.")
def get_tokenizer(model: str):
if "gpt-4" in model or "gpt-3.5" in model:
return tiktoken.encoding_for_model(model)
logger.debug(
f"No encoder implemented for model {model}."
"Defaulting to tiktoken cl100k_base encoder."
"Use results only as estimates."
)
return tiktoken.get_encoding("cl100k_base")
def serialize_messages(messages: List[Message]) -> str:
return AI.serialize_messages(messages)