mirror of
https://github.com/aljazceru/goose.git
synced 2025-12-24 01:24:28 +01:00
Tutorial : cognee-mcp (#3025)
Co-authored-by: kevco <kevin.cojean@agysoft.fr> Co-authored-by: Rizel Scarlett <rizel@squareup.com>
This commit is contained in:
259
documentation/docs/mcp/cognee-mcp.md
Normal file
259
documentation/docs/mcp/cognee-mcp.md
Normal file
@@ -0,0 +1,259 @@
|
|||||||
|
---
|
||||||
|
title: Cognee Extension
|
||||||
|
description: Add Cognee MCP Server as a Goose Extension
|
||||||
|
---
|
||||||
|
|
||||||
|
import Tabs from '@theme/Tabs';
|
||||||
|
import TabItem from '@theme/TabItem';
|
||||||
|
import CLIExtensionInstructions from '@site/src/components/CLIExtensionInstructions';
|
||||||
|
|
||||||
|
This tutorial covers how to add the [Cognee MCP Server](https://github.com/topoteretes/cognee) as a Goose extension to enable knowledge graph memory capabilities, connecting to over 30 data sources for enhanced context and retrieval.
|
||||||
|
|
||||||
|
:::tip TLDR
|
||||||
|
**Command**
|
||||||
|
```sh
|
||||||
|
uv --directory /path/to/cognee-mcp run python src/server.py
|
||||||
|
```
|
||||||
|
**Environment Variables**
|
||||||
|
```
|
||||||
|
LLM_API_KEY: <YOUR_OPENAI_API_KEY>
|
||||||
|
EMBEDDING_API_KEY: <YOUR_OPENAI_API_KEY>
|
||||||
|
```
|
||||||
|
:::
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
:::info
|
||||||
|
Note that you'll need [uv](https://docs.astral.sh/uv/#installation) installed on your system to run this command, as it uses `uv`.
|
||||||
|
:::
|
||||||
|
|
||||||
|
<Tabs groupId="interface">
|
||||||
|
<TabItem value="cli" label="Goose CLI" default>
|
||||||
|
|
||||||
|
1. First, install Cognee:
|
||||||
|
```bash
|
||||||
|
# Clone and install Cognee
|
||||||
|
git clone https://github.com/topoteretes/cognee
|
||||||
|
cd cognee-mcp
|
||||||
|
uv sync --dev --all-extras --reinstall
|
||||||
|
|
||||||
|
# On Linux, install additional dependencies
|
||||||
|
sudo apt install -y libpq-dev python3-dev
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Run the `configure` command:
|
||||||
|
```sh
|
||||||
|
goose configure
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Choose to add a `Command-line Extension`
|
||||||
|
```sh
|
||||||
|
┌ goose-configure
|
||||||
|
│
|
||||||
|
◇ What would you like to configure?
|
||||||
|
│ Add Extension (Connect to a new extension)
|
||||||
|
│
|
||||||
|
◆ What type of extension would you like to add?
|
||||||
|
│ ○ Built-in Extension
|
||||||
|
// highlight-start
|
||||||
|
│ ● Command-line Extension (Run a local command or script)
|
||||||
|
// highlight-end
|
||||||
|
│ ○ Remote Extension
|
||||||
|
└
|
||||||
|
```
|
||||||
|
|
||||||
|
4. Give your extension a name
|
||||||
|
```sh
|
||||||
|
┌ goose-configure
|
||||||
|
│
|
||||||
|
◇ What would you like to configure?
|
||||||
|
│ Add Extension (Connect to a new extension)
|
||||||
|
│
|
||||||
|
◇ What type of extension would you like to add?
|
||||||
|
│ Command-line Extension
|
||||||
|
│
|
||||||
|
// highlight-start
|
||||||
|
◆ What would you like to call this extension?
|
||||||
|
│ Cognee
|
||||||
|
// highlight-end
|
||||||
|
└
|
||||||
|
```
|
||||||
|
|
||||||
|
5. Enter the command
|
||||||
|
```sh
|
||||||
|
┌ goose-configure
|
||||||
|
│
|
||||||
|
◇ What would you like to configure?
|
||||||
|
│ Add Extension (Connect to a new extension)
|
||||||
|
│
|
||||||
|
◇ What type of extension would you like to add?
|
||||||
|
│ Command-line Extension
|
||||||
|
│
|
||||||
|
◇ What would you like to call this extension?
|
||||||
|
│ Cognee
|
||||||
|
│
|
||||||
|
// highlight-start
|
||||||
|
◆ What command should be run?
|
||||||
|
│ uv --directory /path/to/cognee-mcp run python src/server.py
|
||||||
|
// highlight-end
|
||||||
|
└
|
||||||
|
```
|
||||||
|
|
||||||
|
6. Enter the number of seconds Goose should wait for actions to complete before timing out. Default is 300s
|
||||||
|
```sh
|
||||||
|
┌ goose-configure
|
||||||
|
│
|
||||||
|
◇ What would you like to configure?
|
||||||
|
│ Add Extension (Connect to a new extension)
|
||||||
|
│
|
||||||
|
◇ What type of extension would you like to add?
|
||||||
|
│ Command-line Extension
|
||||||
|
│
|
||||||
|
◇ What would you like to call this extension?
|
||||||
|
│ Cognee
|
||||||
|
│
|
||||||
|
◇ What command should be run?
|
||||||
|
│ uv --directory /path/to/cognee-mcp run python src/server.py
|
||||||
|
│
|
||||||
|
// highlight-start
|
||||||
|
◆ Please set the timeout for this tool (in secs):
|
||||||
|
│ 300
|
||||||
|
// highlight-end
|
||||||
|
│
|
||||||
|
└
|
||||||
|
```
|
||||||
|
|
||||||
|
7. Choose to add a description. If you select "Yes" here, you will be prompted to enter a description for the extension.
|
||||||
|
```sh
|
||||||
|
┌ goose-configure
|
||||||
|
│
|
||||||
|
◇ What would you like to configure?
|
||||||
|
│ Add Extension (Connect to a new extension)
|
||||||
|
│
|
||||||
|
◇ What type of extension would you like to add?
|
||||||
|
│ Command-line Extension
|
||||||
|
│
|
||||||
|
◇ What would you like to call this extension?
|
||||||
|
│ Cognee
|
||||||
|
│
|
||||||
|
◇ What command should be run?
|
||||||
|
│ uv --directory /path/to/cognee-mcp run python src/server.py
|
||||||
|
│
|
||||||
|
◇ Please set the timeout for this tool (in secs):
|
||||||
|
│ 300
|
||||||
|
│
|
||||||
|
// highlight-start
|
||||||
|
◇ Would you like to add a description?
|
||||||
|
│ No
|
||||||
|
// highlight-end
|
||||||
|
│
|
||||||
|
└
|
||||||
|
```
|
||||||
|
|
||||||
|
8. Add the required environment variables:
|
||||||
|
:::info
|
||||||
|
You'll need OpenAI API keys for both LLM and embedding models. [Get your API keys here](https://platform.openai.com/api-keys).
|
||||||
|
:::
|
||||||
|
|
||||||
|
```sh
|
||||||
|
┌ goose-configure
|
||||||
|
│
|
||||||
|
◇ What would you like to configure?
|
||||||
|
│ Add Extension (Connect to a new extension)
|
||||||
|
│
|
||||||
|
◇ What type of extension would you like to add?
|
||||||
|
│ Command-line Extension
|
||||||
|
│
|
||||||
|
◇ What would you like to call this extension?
|
||||||
|
│ Cognee
|
||||||
|
│
|
||||||
|
◇ What command should be run?
|
||||||
|
│ uv --directory /path/to/cognee-mcp run python src/server.py
|
||||||
|
│
|
||||||
|
◇ Please set the timeout for this tool (in secs):
|
||||||
|
│ 300
|
||||||
|
│
|
||||||
|
◇ Would you like to add a description?
|
||||||
|
│ No
|
||||||
|
│
|
||||||
|
// highlight-start
|
||||||
|
◆ Would you like to add environment variables?
|
||||||
|
│ Yes
|
||||||
|
│
|
||||||
|
◇ Environment variable name:
|
||||||
|
│ LLM_API_KEY
|
||||||
|
│
|
||||||
|
◇ Environment variable value:
|
||||||
|
│ ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
|
||||||
|
│
|
||||||
|
◇ Add another environment variable?
|
||||||
|
│ Yes
|
||||||
|
│
|
||||||
|
◇ Environment variable name:
|
||||||
|
│ EMBEDDING_API_KEY
|
||||||
|
│
|
||||||
|
◇ Environment variable value:
|
||||||
|
│ ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
|
||||||
|
│
|
||||||
|
◇ Add another environment variable?
|
||||||
|
│ No
|
||||||
|
// highlight-end
|
||||||
|
└ Added Cognee extension
|
||||||
|
```
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
</Tabs>
|
||||||
|
|
||||||
|
## Example Usage
|
||||||
|
|
||||||
|
Cognee provides knowledge graph memory capabilities for Goose, allowing it to remember and connect information across conversations and documents.
|
||||||
|
|
||||||
|
:::info LLM
|
||||||
|
OpenAI's GPT-4o was used for this task.
|
||||||
|
:::
|
||||||
|
|
||||||
|
### Goose Prompt
|
||||||
|
|
||||||
|
> _Goose, please cognify this information: "I prefer Python for data analysis and use pandas extensively. My current project involves analyzing customer behavior data." Then search for information about my programming preferences._
|
||||||
|
|
||||||
|
### Goose Output
|
||||||
|
|
||||||
|
:::note CLI
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Tool Calls</summary>
|
||||||
|
|
||||||
|
─── cognee_cognify | abcdefgh ──────────────────────────
|
||||||
|
|
||||||
|
data: I prefer Python for data analysis and use pandas extensively. My current project involves analyzing customer behavior data.
|
||||||
|
|
||||||
|
|
||||||
|
─── cognee_search | abcdefgh ──────────────────────────
|
||||||
|
|
||||||
|
search_query: programming preferences Python data analysis
|
||||||
|
|
||||||
|
search_type: GRAPH_COMPLETION
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
I'll help you store that information in the knowledge graph and then search for your programming preferences.
|
||||||
|
|
||||||
|
First, let me cognify the information about your preferences:
|
||||||
|
|
||||||
|
**Cognify Status:**
|
||||||
|
Background process launched due to MCP timeout limitations. The information about your Python and pandas preferences for data analysis has been added to the knowledge graph.
|
||||||
|
|
||||||
|
Now let me search for information about your programming preferences:
|
||||||
|
|
||||||
|
**Search Results:**
|
||||||
|
Based on the knowledge graph, I found information about your programming preferences:
|
||||||
|
|
||||||
|
- **Language Preference**: You prefer Python for data analysis
|
||||||
|
- **Key Libraries**: You use pandas extensively for data manipulation
|
||||||
|
- **Current Focus**: Your current project involves analyzing customer behavior data
|
||||||
|
- **Domain**: Data science and analytics workflows
|
||||||
|
- **Technical Stack**: Python + pandas for data analysis tasks
|
||||||
|
|
||||||
|
The knowledge graph has successfully stored and can now retrieve your programming preferences and project context for future conversations.
|
||||||
|
|
||||||
|
:::
|
||||||
303
documentation/docs/tutorials/advanced-cognee-usage.md
Normal file
303
documentation/docs/tutorials/advanced-cognee-usage.md
Normal file
@@ -0,0 +1,303 @@
|
|||||||
|
---
|
||||||
|
title: Advanced Cognee Usage with Goose
|
||||||
|
description: Advanced patterns for using Cognee knowledge graph with Goose for enhanced memory and automation
|
||||||
|
---
|
||||||
|
|
||||||
|
import Tabs from '@theme/Tabs';
|
||||||
|
import TabItem from '@theme/TabItem';
|
||||||
|
|
||||||
|
# Advanced Cognee Usage with Goose
|
||||||
|
|
||||||
|
This tutorial covers advanced usage patterns for the Cognee extension with Goose, including automated memory management, knowledge graph optimization, and various integration strategies.
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
While the basic [Cognee MCP setup](../mcp/cognee-mcp.md) gets you started, this tutorial explores how to make Goose autonomously use the knowledge graph and optimize your workflow.
|
||||||
|
|
||||||
|
## Key Concepts
|
||||||
|
|
||||||
|
### Knowledge Graph Memory
|
||||||
|
Cognee creates a structured knowledge graph that:
|
||||||
|
- Interconnects conversations, documents, images, and audio transcriptions
|
||||||
|
- Supports over 30 data sources
|
||||||
|
- Replaces traditional RAG systems with dynamic relationship mapping
|
||||||
|
- Enables complex multi-hop reasoning
|
||||||
|
|
||||||
|
### Search Types
|
||||||
|
Understanding Cognee's search types is crucial for effective usage:
|
||||||
|
|
||||||
|
| Search Type | Use Case | Description |
|
||||||
|
|-------------|----------|-------------|
|
||||||
|
| `SUMMARIES` | Summary requests | High-level overviews |
|
||||||
|
| `INSIGHTS` | Relationship queries | Connections between entities |
|
||||||
|
| `CHUNKS` | Specific facts | Raw text segments |
|
||||||
|
| `COMPLETION` | Explanations | LLM-generated responses |
|
||||||
|
| `GRAPH_COMPLETION` | Complex relations | Multi-hop reasoning |
|
||||||
|
| `GRAPH_SUMMARY` | Concise answers | Brief, focused responses |
|
||||||
|
| `GRAPH_COMPLETION_COT` | Multi-hop Q&A | Chain-of-thought reasoning |
|
||||||
|
| `GRAPH_CONTEXT_EXT` | Context extension | Expanded context |
|
||||||
|
| `CODE` | Code examples | Programming-related queries |
|
||||||
|
|
||||||
|
## Automation Strategies
|
||||||
|
|
||||||
|
<Tabs>
|
||||||
|
<TabItem value="method1" label="Method 1 (Slow)" default>
|
||||||
|
|
||||||
|
### Instruction Files
|
||||||
|
|
||||||
|
Use instruction files for consistent behavior across sessions. This method uses fewer tokens but has slower startup.
|
||||||
|
|
||||||
|
Create `~/.config/goose/cognee-instructions.md`:
|
||||||
|
|
||||||
|
```markdown
|
||||||
|
You are an LLM agent with access to a Cognee knowledge graph for memory.
|
||||||
|
|
||||||
|
**IMPORTANT RULES:**
|
||||||
|
- Never call the `prune` command
|
||||||
|
- Always search memory before responding to user queries
|
||||||
|
- Automatically cognify new information you learn about the user
|
||||||
|
|
||||||
|
**Memory Workflow:**
|
||||||
|
1. **Before each response**: Search the knowledge graph
|
||||||
|
- Map user request to appropriate search type:
|
||||||
|
- Summary → SUMMARIES
|
||||||
|
- Relationships → INSIGHTS
|
||||||
|
- Specific facts → CHUNKS
|
||||||
|
- Explanations → COMPLETION
|
||||||
|
- Complex relations → GRAPH_COMPLETION
|
||||||
|
- Code examples → CODE
|
||||||
|
|
||||||
|
2. **Search command**:
|
||||||
|
```text
|
||||||
|
cognee-mcp__search(\{
|
||||||
|
search_query: "user prompt",
|
||||||
|
search_type: "mapped type"
|
||||||
|
\})
|
||||||
|
```
|
||||||
|
|
||||||
|
3. **Incorporate results** into your response
|
||||||
|
|
||||||
|
**Memory Updates:**
|
||||||
|
- When you learn new facts, preferences, or relationships about the user
|
||||||
|
- Call: `cognee-mcp__cognify(\{ data: "information" \})`
|
||||||
|
- Monitor with: `cognee-mcp__cognify_status()`
|
||||||
|
|
||||||
|
**Code Analysis:**
|
||||||
|
- When asked to analyze code repositories
|
||||||
|
- Use: `cognee-mcp__codify(\{ repo_path: "path" \})`
|
||||||
|
- Only process files returned by `rg --files`
|
||||||
|
```
|
||||||
|
|
||||||
|
Start Goose with instructions:
|
||||||
|
```bash
|
||||||
|
goose run -i ~/.config/goose/cognee-instructions.md -s
|
||||||
|
```
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
<TabItem value="method2" label="Method 2">
|
||||||
|
|
||||||
|
### Goosehints File
|
||||||
|
|
||||||
|
For faster startup with higher token usage, add to your `.goosehints` file:
|
||||||
|
|
||||||
|
```text
|
||||||
|
COGNEE_MEMORY_SYSTEM:
|
||||||
|
You have access to a Cognee knowledge graph for persistent memory.
|
||||||
|
|
||||||
|
MEMORY_RETRIEVAL_PROTOCOL:
|
||||||
|
- Before responding, determine request type and map to search type
|
||||||
|
- Search types: SUMMARIES, INSIGHTS, CHUNKS, COMPLETION, GRAPH_COMPLETION, CODE
|
||||||
|
- Always call: cognee-mcp__search with search_query and search_type parameters
|
||||||
|
- Incorporate memory results into responses
|
||||||
|
|
||||||
|
MEMORY_STORAGE_PROTOCOL:
|
||||||
|
- Auto-cognify new user facts, preferences, relationships
|
||||||
|
- Call: cognee-mcp__cognify with data parameter
|
||||||
|
- Never use prune command
|
||||||
|
|
||||||
|
CODE_ANALYSIS_PROTOCOL:
|
||||||
|
- For repositories: cognee-mcp__codify with repo_path parameter
|
||||||
|
- Only process files from rg --files output
|
||||||
|
```
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
</Tabs>
|
||||||
|
|
||||||
|
### Strategy 3: Memory MCP Integration
|
||||||
|
|
||||||
|
Combine with the [Memory MCP extension](../mcp/memory-mcp.md) for hybrid approach:
|
||||||
|
|
||||||
|
1. Store Cognee usage patterns as memories
|
||||||
|
2. Use Memory MCP to trigger Cognee searches
|
||||||
|
3. Lower token usage than goosehints
|
||||||
|
4. More reliable than pure instruction files
|
||||||
|
|
||||||
|
## Advanced Workflows
|
||||||
|
|
||||||
|
### Developer Workflow
|
||||||
|
|
||||||
|
For software development projects:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Start Goose with Cognee
|
||||||
|
goose session
|
||||||
|
|
||||||
|
# In Goose, analyze your codebase
|
||||||
|
> Goose, please codify this repository and then help me understand the architecture
|
||||||
|
```
|
||||||
|
|
||||||
|
Goose will:
|
||||||
|
1. Run `cognee-mcp__codify` on your repository
|
||||||
|
2. Build a code knowledge graph
|
||||||
|
3. Answer architecture questions using the graph
|
||||||
|
|
||||||
|
### Research Workflow
|
||||||
|
|
||||||
|
For research and documentation:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Cognify research documents
|
||||||
|
> Goose, please cognify the contents of these research papers: paper1.pdf, paper2.pdf, paper3.pdf
|
||||||
|
|
||||||
|
# Later, query relationships
|
||||||
|
> What are the connections between the methodologies in these papers?
|
||||||
|
```
|
||||||
|
|
||||||
|
### Personal Assistant Workflow
|
||||||
|
|
||||||
|
For personal productivity:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Store preferences
|
||||||
|
> Remember that I prefer morning meetings, work best with 2-hour focused blocks, and need 15-minute breaks between calls
|
||||||
|
|
||||||
|
# Query later
|
||||||
|
> Based on my preferences, how should I structure tomorrow's schedule?
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Optimization
|
||||||
|
|
||||||
|
### Server Configuration
|
||||||
|
|
||||||
|
For optimal performance, run Cognee as a separate server:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Create optimized startup script
|
||||||
|
cat > start-cognee-optimized.sh << 'EOF'
|
||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
# Performance settings
|
||||||
|
export DEBUG=false
|
||||||
|
export LOG_LEVEL=WARNING
|
||||||
|
export RATE_LIMIT_INTERVAL=30
|
||||||
|
|
||||||
|
# Model configuration
|
||||||
|
export LLM_API_KEY=${OPENAI_API_KEY}
|
||||||
|
export LLM_MODEL=openai/gpt-4o-mini # Faster, cheaper model
|
||||||
|
export EMBEDDING_API_KEY=${OPENAI_API_KEY}
|
||||||
|
export EMBEDDING_MODEL=openai/text-embedding-3-small # Faster embedding
|
||||||
|
|
||||||
|
# Server settings
|
||||||
|
export HOST=0.0.0.0
|
||||||
|
export PORT=8000
|
||||||
|
|
||||||
|
cd /path/to/cognee-mcp
|
||||||
|
uv run python src/server.py --transport sse
|
||||||
|
EOF
|
||||||
|
|
||||||
|
chmod +x start-cognee-optimized.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### Memory Management
|
||||||
|
|
||||||
|
Monitor and manage your knowledge graph:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Check status
|
||||||
|
> Goose, what's the status of the cognify pipeline?
|
||||||
|
|
||||||
|
# Selective pruning (if needed)
|
||||||
|
> Goose, can you help me identify outdated information in the knowledge graph?
|
||||||
|
```
|
||||||
|
|
||||||
|
## Troubleshooting
|
||||||
|
|
||||||
|
### Common Issues
|
||||||
|
|
||||||
|
1. **Slow startup**: Use Method 2 (separate server) configuration
|
||||||
|
2. **Memory not persisting**: Check file permissions and paths
|
||||||
|
3. **Search returning empty results**: Ensure data was properly cognified
|
||||||
|
4. **High token usage**: Use instruction files instead of goosehints
|
||||||
|
|
||||||
|
### Debug Commands
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Check Cognee logs
|
||||||
|
tail -f ~/.local/share/cognee/logs/cognee.log
|
||||||
|
|
||||||
|
# Test server connection
|
||||||
|
curl http://localhost:8000/health
|
||||||
|
|
||||||
|
# Verify knowledge graph status
|
||||||
|
# In Goose session:
|
||||||
|
> Goose, run cognify_status and codify_status
|
||||||
|
```
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
### Data Organization
|
||||||
|
|
||||||
|
1. **Use nodesets** for organizing different types of information:
|
||||||
|
```bash
|
||||||
|
# Developer rules
|
||||||
|
> Goose, add these coding standards to the 'developer_rules' nodeset
|
||||||
|
|
||||||
|
# Project-specific info
|
||||||
|
> Goose, cognify this project documentation with nodeset 'project_alpha'
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Regular maintenance**:
|
||||||
|
- Review and update stored information monthly
|
||||||
|
- Remove outdated preferences and facts
|
||||||
|
- Optimize search queries based on usage patterns
|
||||||
|
|
||||||
|
### Integration Patterns
|
||||||
|
|
||||||
|
1. **Layered approach**: Use both Memory MCP and Cognee for different purposes
|
||||||
|
2. **Context switching**: Different instruction files for different workflows
|
||||||
|
3. **Selective automation**: Not every interaction needs knowledge graph queries
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
### Code Review Assistant
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Setup
|
||||||
|
> Goose, codify this repository and remember that I prefer: functional programming patterns, comprehensive tests, and clear documentation
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
> Review this pull request and check it against my coding preferences
|
||||||
|
```
|
||||||
|
|
||||||
|
### Meeting Assistant
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Before meeting
|
||||||
|
> Goose, cognify the agenda and participant backgrounds from these documents
|
||||||
|
|
||||||
|
# During/after meeting
|
||||||
|
> Based on the knowledge graph, what are the key action items and how do they relate to our previous discussions?
|
||||||
|
```
|
||||||
|
|
||||||
|
### Research Assistant
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Literature review
|
||||||
|
> Goose, cognify these 10 research papers and create a knowledge graph of the relationships between their methodologies
|
||||||
|
|
||||||
|
# Synthesis
|
||||||
|
> What are the emerging patterns in the research and what gaps exist?
|
||||||
|
```
|
||||||
|
|
||||||
|
This advanced usage guide should help you maximize the potential of Cognee with Goose for sophisticated knowledge management and automation workflows.
|
||||||
Reference in New Issue
Block a user