Files
generative-models/sgm/inference/helpers.py
Stephan Auerhahn f86ffac274 context manager
2023-08-09 12:38:44 -07:00

388 lines
13 KiB
Python

import contextlib
import os
from typing import Union, List, Optional
import math
import numpy as np
import torch
from PIL import Image
from einops import rearrange
from imwatermark import WatermarkEncoder
from omegaconf import ListConfig
from torch import autocast
from sgm.util import append_dims
class WatermarkEmbedder:
def __init__(self, watermark):
self.watermark = watermark
self.num_bits = len(WATERMARK_BITS)
self.encoder = WatermarkEncoder()
self.encoder.set_watermark("bits", self.watermark)
def __call__(self, image: torch.Tensor):
"""
Adds a predefined watermark to the input image
Args:
image: ([N,] B, C, H, W) in range [0, 1]
Returns:
same as input but watermarked
"""
# watermarking libary expects input as cv2 BGR format
squeeze = len(image.shape) == 4
if squeeze:
image = image[None, ...]
n = image.shape[0]
image_np = rearrange(
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c"
).numpy()[:, :, :, ::-1]
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
for k in range(image_np.shape[0]):
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
image = torch.from_numpy(
rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)
).to(image.device)
image = torch.clamp(image / 255, min=0.0, max=1.0)
if squeeze:
image = image[0]
return image
# A fixed 48-bit message that was choosen at random
# WATERMARK_MESSAGE = 0xB3EC907BB19E
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
embed_watermark = WatermarkEmbedder(WATERMARK_BITS)
def get_unique_embedder_keys_from_conditioner(conditioner):
return list({x.input_key for x in conditioner.embedders})
def perform_save_locally(save_path, samples):
os.makedirs(os.path.join(save_path), exist_ok=True)
base_count = len(os.listdir(os.path.join(save_path)))
samples = embed_watermark(samples)
for sample in samples:
sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c")
Image.fromarray(sample.astype(np.uint8)).save(
os.path.join(save_path, f"{base_count:09}.png")
)
base_count += 1
class Img2ImgDiscretizationWrapper:
"""
wraps a discretizer, and prunes the sigmas
params:
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned)
"""
def __init__(self, discretization, strength: float = 1.0):
self.discretization = discretization
self.strength = strength
assert 0.0 <= self.strength <= 1.0
def __call__(self, *args, **kwargs):
# sigmas start large first, and decrease then
sigmas = self.discretization(*args, **kwargs)
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
sigmas = torch.flip(sigmas, (0,))
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)]
print("prune index:", max(int(self.strength * len(sigmas)), 1))
sigmas = torch.flip(sigmas, (0,))
print(f"sigmas after pruning: ", sigmas)
return sigmas
class Txt2NoisyDiscretizationWrapper:
"""
wraps a discretizer, and prunes the sigmas
params:
strength: float between 0.0 and 1.0. 0.0 means full sampling (all sigmas are returned)
"""
def __init__(self, discretization, strength: float = 0.0, original_steps=None):
self.discretization = discretization
self.strength = strength
self.original_steps = original_steps
assert 0.0 <= self.strength <= 1.0
def __call__(self, *args, **kwargs):
# sigmas start large first, and decrease then
sigmas = self.discretization(*args, **kwargs)
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
sigmas = torch.flip(sigmas, (0,))
if self.original_steps is None:
steps = len(sigmas)
else:
steps = self.original_steps + 1
prune_index = max(min(int(self.strength * steps) - 1, steps - 1), 0)
sigmas = sigmas[prune_index:]
print("prune index:", prune_index)
sigmas = torch.flip(sigmas, (0,))
print(f"sigmas after pruning: ", sigmas)
return sigmas
def do_sample(
model,
sampler,
value_dict,
num_samples,
H,
W,
C,
F,
force_uc_zero_embeddings: Optional[List] = None,
batch2model_input: Optional[List] = None,
return_latents=False,
filter=None,
device="cuda",
):
if force_uc_zero_embeddings is None:
force_uc_zero_embeddings = []
if batch2model_input is None:
batch2model_input = []
with torch.no_grad():
with autocast(device) as precision_scope:
with model.ema_scope():
num_samples = [num_samples]
with SwapToDevice(model.conditioner, device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
num_samples,
)
for key in batch:
if isinstance(batch[key], torch.Tensor):
print(key, batch[key].shape)
elif isinstance(batch[key], list):
print(key, [len(l) for l in batch[key]])
else:
print(key, batch[key])
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=force_uc_zero_embeddings,
)
for k in c:
if not k == "crossattn":
c[k], uc[k] = map(
lambda y: y[k][: math.prod(num_samples)].to(device), (c, uc)
)
additional_model_inputs = {}
for k in batch2model_input:
additional_model_inputs[k] = batch[k]
shape = (math.prod(num_samples), C, H // F, W // F)
randn = torch.randn(shape).to(device)
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
with SwapToDevice(model.denoiser, device):
with SwapToDevice(model.model, device):
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
with SwapToDevice(model.first_stage_model, device):
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
if filter is not None:
samples = filter(samples)
if return_latents:
return samples, samples_z
return samples
def get_batch(keys, value_dict, N: Union[List, ListConfig], device="cuda"):
# Hardcoded demo setups; might undergo some changes in the future
batch = {}
batch_uc = {}
for key in keys:
if key == "txt":
batch["txt"] = (
np.repeat([value_dict["prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
batch_uc["txt"] = (
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
elif key == "original_size_as_tuple":
batch["original_size_as_tuple"] = (
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
.to(device)
.repeat(*N, 1)
)
elif key == "crop_coords_top_left":
batch["crop_coords_top_left"] = (
torch.tensor(
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
)
.to(device)
.repeat(*N, 1)
)
elif key == "aesthetic_score":
batch["aesthetic_score"] = (
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
)
batch_uc["aesthetic_score"] = (
torch.tensor([value_dict["negative_aesthetic_score"]])
.to(device)
.repeat(*N, 1)
)
elif key == "target_size_as_tuple":
batch["target_size_as_tuple"] = (
torch.tensor([value_dict["target_height"], value_dict["target_width"]])
.to(device)
.repeat(*N, 1)
)
else:
batch[key] = value_dict[key]
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def get_input_image_tensor(image: Image.Image, device="cuda"):
w, h = image.size
print(f"loaded input image of size ({w}, {h})")
width, height = map(
lambda x: x - x % 64, (w, h)
) # resize to integer multiple of 64
image = image.resize((width, height))
image_array = np.array(image.convert("RGB"))
image_array = image_array[None].transpose(0, 3, 1, 2)
image_tensor = torch.from_numpy(image_array).to(dtype=torch.float32) / 127.5 - 1.0
return image_tensor.to(device)
def do_img2img(
img,
model,
sampler,
value_dict,
num_samples,
force_uc_zero_embeddings=[],
additional_kwargs={},
offset_noise_level: float = 0.0,
return_latents=False,
skip_encode=False,
filter=None,
add_noise=True,
device="cuda",
):
with torch.no_grad():
with autocast(device):
with model.ema_scope():
with SwapToDevice(model.conditioner, device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[num_samples],
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=force_uc_zero_embeddings,
)
for k in c:
c[k], uc[k] = map(lambda y: y[k][:num_samples].to(device), (c, uc))
for k in additional_kwargs:
c[k] = uc[k] = additional_kwargs[k]
if skip_encode:
z = img
else:
with SwapToDevice(model.first_stage_model, device):
z = model.encode_first_stage(img)
noise = torch.randn_like(z)
sigmas = sampler.discretization(sampler.num_steps)
sigma = sigmas[0].to(z.device)
if offset_noise_level > 0.0:
noise = noise + offset_noise_level * append_dims(
torch.randn(z.shape[0], device=z.device), z.ndim
)
if add_noise:
noised_z = z + noise * append_dims(sigma, z.ndim).cuda()
noised_z = noised_z / torch.sqrt(
1.0 + sigmas[0] ** 2.0
) # Note: hardcoded to DDPM-like scaling. need to generalize later.
else:
noised_z = z / torch.sqrt(1.0 + sigmas[0] ** 2.0)
def denoiser(x, sigma, c):
return model.denoiser(model.model, x, sigma, c)
with SwapToDevice(model.denoiser, device):
with SwapToDevice(model.model, device):
samples_z = sampler(denoiser, noised_z, cond=c, uc=uc)
with SwapToDevice(model.first_stage_model, device):
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
if filter is not None:
samples = filter(samples)
if return_latents:
return samples, samples_z
return samples
@contextlib.contextmanager
def SwapToDevice(
model: Union[torch.nn.Module, torch.Tensor], device: Union[torch.device, str]
):
"""
Context manager that swaps a model or tensor to a device, and then swaps it back to its original device
when the context is exited.
"""
if isinstance(model, torch.Tensor):
original_device = model.device
else:
param = next(model.parameters(), None)
if param is not None:
original_device = param.device
else:
buf = next(model.buffers(), None)
if buf is not None:
original_device = buf.device
else:
# If device could not be found, do nothing
return
device = torch.device(device)
if device != original_device:
model.to(device)
yield
if device != original_device:
model.to(original_device)
if torch.cuda.is_available():
torch.cuda.empty_cache()