Files
generative-models/scripts/demo/sampling.py
2023-08-10 12:40:32 -07:00

335 lines
9.1 KiB
Python

import os
import numpy as np
import streamlit as st
import torch
from einops import repeat
from pytorch_lightning import seed_everything
from sgm.inference.api import (
SamplingSpec,
SamplingParams,
ModelArchitecture,
SamplingPipeline,
model_specs,
)
from sgm.inference.helpers import (
get_unique_embedder_keys_from_conditioner,
perform_save_locally,
)
from scripts.demo.streamlit_helpers import (
get_interactive_image,
init_embedder_options,
init_sampling,
init_save_locally,
init_st,
show_samples,
)
SAVE_PATH = "outputs/demo/txt2img/"
SD_XL_BASE_RATIOS = {
"0.5": (704, 1408),
"0.52": (704, 1344),
"0.57": (768, 1344),
"0.6": (768, 1280),
"0.68": (832, 1216),
"0.72": (832, 1152),
"0.78": (896, 1152),
"0.82": (896, 1088),
"0.88": (960, 1088),
"0.94": (960, 1024),
"1.0": (1024, 1024),
"1.07": (1024, 960),
"1.13": (1088, 960),
"1.21": (1088, 896),
"1.29": (1152, 896),
"1.38": (1152, 832),
"1.46": (1216, 832),
"1.67": (1280, 768),
"1.75": (1344, 768),
"1.91": (1344, 704),
"2.0": (1408, 704),
"2.09": (1472, 704),
"2.4": (1536, 640),
"2.5": (1600, 640),
"2.89": (1664, 576),
"3.0": (1728, 576),
}
def load_img(display=True, key=None, device="cuda"):
image = get_interactive_image(key=key)
if image is None:
return None
if display:
st.image(image)
w, h = image.size
print(f"loaded input image of size ({w}, {h})")
width, height = map(
lambda x: x - x % 64, (w, h)
) # resize to integer multiple of 64
image = image.resize((width, height))
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image.to(device)
def run_txt2img(
state,
version: str,
prompt: str,
negative_prompt: str,
return_latents=False,
stage2strength=None,
):
spec: SamplingSpec = state["spec"]
model: SamplingPipeline = state["model"]
params: SamplingParams = state["params"]
if version.startswith("stable-diffusion-xl") and version.endswith("-base"):
params.width, params.height = st.selectbox(
"Resolution:", list(SD_XL_BASE_RATIOS.values()), 10
)
else:
params.height = int(
st.number_input("H", value=spec.height, min_value=64, max_value=2048)
)
params.width = int(
st.number_input("W", value=spec.width, min_value=64, max_value=2048)
)
params = init_embedder_options(
get_unique_embedder_keys_from_conditioner(model.model.conditioner),
params=params,
prompt=prompt,
negative_prompt=negative_prompt,
)
params, num_rows, num_cols = init_sampling(params=params)
num_samples = num_rows * num_cols
if st.button("Sample"):
st.write(f"**Model I:** {version}")
outputs = st.empty()
st.text("Sampling")
out = model.text_to_image(
params=params,
prompt=prompt,
negative_prompt=negative_prompt,
samples=int(num_samples),
return_latents=return_latents,
noise_strength=stage2strength,
filter=state["filter"],
)
show_samples(out, outputs)
return out
def run_img2img(
state,
prompt: str,
negative_prompt: str,
return_latents=False,
stage2strength=None,
):
model: SamplingPipeline = state["model"]
params: SamplingParams = state["params"]
img = load_img()
if img is None:
return None
params.height, params.width = img.shape[2], img.shape[3]
params = init_embedder_options(
get_unique_embedder_keys_from_conditioner(model.model.conditioner),
params=params,
prompt=prompt,
negative_prompt=negative_prompt,
)
params.img2img_strength = st.number_input(
"**Img2Img Strength**", value=0.75, min_value=0.0, max_value=1.0
)
params, num_rows, num_cols = init_sampling(params=params)
num_samples = num_rows * num_cols
if st.button("Sample"):
outputs = st.empty()
st.text("Sampling")
out = model.image_to_image(
image=repeat(img, "1 ... -> n ...", n=num_samples),
params=params,
prompt=prompt,
negative_prompt=negative_prompt,
samples=int(num_samples),
return_latents=return_latents,
noise_strength=stage2strength,
filter=state["filter"],
)
show_samples(out, outputs)
return out
def apply_refiner(
input,
state,
num_samples: int,
prompt: str,
negative_prompt: str,
finish_denoising=False,
):
model: SamplingPipeline = state["model"]
params: SamplingParams = state["params"]
params.orig_width = input.shape[3] * 8
params.orig_height = input.shape[2] * 8
params.width = input.shape[3] * 8
params.height = input.shape[2] * 8
st.warning(f"refiner input shape: {input.shape}")
samples = model.refiner(
image=input,
params=params,
prompt=prompt,
negative_prompt=negative_prompt,
samples=num_samples,
return_latents=False,
filter=state["filter"],
add_noise=not finish_denoising,
)
return samples
sdxl_base_model_list = [
ModelArchitecture.SDXL_V1_BASE,
ModelArchitecture.SDXL_V0_9_BASE,
]
sdxl_refiner_model_list = [
ModelArchitecture.SDXL_V1_REFINER,
ModelArchitecture.SDXL_V0_9_REFINER,
]
if __name__ == "__main__":
st.title("Stable Diffusion")
version = st.selectbox(
"Model Version",
[member.value for member in ModelArchitecture],
0,
)
version_enum = ModelArchitecture(version)
specs = model_specs[version_enum]
mode = st.radio("Mode", ("txt2img", "img2img"), 0)
st.write("__________________________")
if version_enum in sdxl_base_model_list:
add_pipeline = st.checkbox("Load SDXL-refiner?", False)
st.write("__________________________")
else:
add_pipeline = False
seed = int(
st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
)
seed_everything(seed)
save_locally, save_path = init_save_locally(os.path.join(SAVE_PATH, str(version)))
state = init_st(model_specs[version_enum], load_filter=True)
model = state["model"]
is_legacy = specs.is_legacy
prompt = st.text_input(
"prompt",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
)
if is_legacy:
negative_prompt = st.text_input("negative prompt", "")
else:
negative_prompt = "" # which is unused
stage2strength = None
finish_denoising = False
if add_pipeline:
st.write("__________________________")
version2 = ModelArchitecture(
st.selectbox(
"Refiner:",
[member.value for member in sdxl_refiner_model_list],
)
)
st.warning(
f"Running with {version2} as the second stage model. Make sure to provide (V)RAM :) "
)
st.write("**Refiner Options:**")
specs2 = model_specs[version2]
state2 = init_st(specs2, load_filter=False)
params2 = state2["params"]
params2.img2img_strength = st.number_input(
"**Refinement strength**", value=0.15, min_value=0.0, max_value=1.0
)
params2, *_ = init_sampling(
key=2,
params=state2["params"],
specify_num_samples=False,
)
st.write("__________________________")
finish_denoising = st.checkbox("Finish denoising with refiner.", True)
if finish_denoising:
stage2strength = params2.img2img_strength
else:
stage2strength = None
else:
state2 = None
params2 = None
stage2strength = None
if mode == "txt2img":
out = run_txt2img(
state=state,
version=str(version),
prompt=prompt,
negative_prompt=negative_prompt,
return_latents=add_pipeline,
stage2strength=stage2strength,
)
elif mode == "img2img":
out = run_img2img(
state=state,
prompt=prompt,
negative_prompt=negative_prompt,
return_latents=add_pipeline,
stage2strength=stage2strength,
)
else:
raise ValueError(f"unknown mode {mode}")
if isinstance(out, (tuple, list)):
samples, samples_z = out
else:
samples = out
samples_z = None
if add_pipeline and samples_z is not None:
outputs = st.empty()
st.write("**Running Refinement Stage**")
samples = apply_refiner(
input=samples_z,
state=state2,
num_samples=samples_z.shape[0],
prompt=prompt,
negative_prompt=negative_prompt if is_legacy else "",
finish_denoising=finish_denoising,
)
show_samples(samples, outputs)
if save_locally and samples is not None:
perform_save_locally(save_path, samples)