Files
generative-models/sgm/modules/diffusionmodules/sigma_sampling.py
Vikram Voleti abe9ed3d40 Adds SV4D code
2024-07-23 20:17:16 +00:00

39 lines
1.1 KiB
Python

import torch
from typing import Optional, Union
from ...util import default, instantiate_from_config
class EDMSampling:
def __init__(self, p_mean=-1.2, p_std=1.2):
self.p_mean = p_mean
self.p_std = p_std
def __call__(self, n_samples, rand=None):
log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,)))
return log_sigma.exp()
class DiscreteSampling:
def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True):
self.num_idx = num_idx
self.sigmas = instantiate_from_config(discretization_config)(
num_idx, do_append_zero=do_append_zero, flip=flip
)
def idx_to_sigma(self, idx):
return self.sigmas[idx]
def __call__(self, n_samples, rand=None):
idx = default(
rand,
torch.randint(0, self.num_idx, (n_samples,)),
)
return self.idx_to_sigma(idx)
class ZeroSampler:
def __call__(
self, n_samples: int, rand: Optional[torch.Tensor] = None
) -> torch.Tensor:
return torch.zeros_like(default(rand, torch.randn((n_samples,)))) + 1.0e-5