mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 14:24:21 +01:00
* New research features * Add new model specs --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com> * remove sd1.5 and change default refiner to 1.0 * remove asking second time for output * adapt model names * adjusted strength * Correctly pass prompt --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com>
359 lines
9.6 KiB
Python
359 lines
9.6 KiB
Python
from pytorch_lightning import seed_everything
|
|
|
|
from scripts.demo.streamlit_helpers import *
|
|
|
|
SAVE_PATH = "outputs/demo/txt2img/"
|
|
|
|
SD_XL_BASE_RATIOS = {
|
|
"0.5": (704, 1408),
|
|
"0.52": (704, 1344),
|
|
"0.57": (768, 1344),
|
|
"0.6": (768, 1280),
|
|
"0.68": (832, 1216),
|
|
"0.72": (832, 1152),
|
|
"0.78": (896, 1152),
|
|
"0.82": (896, 1088),
|
|
"0.88": (960, 1088),
|
|
"0.94": (960, 1024),
|
|
"1.0": (1024, 1024),
|
|
"1.07": (1024, 960),
|
|
"1.13": (1088, 960),
|
|
"1.21": (1088, 896),
|
|
"1.29": (1152, 896),
|
|
"1.38": (1152, 832),
|
|
"1.46": (1216, 832),
|
|
"1.67": (1280, 768),
|
|
"1.75": (1344, 768),
|
|
"1.91": (1344, 704),
|
|
"2.0": (1408, 704),
|
|
"2.09": (1472, 704),
|
|
"2.4": (1536, 640),
|
|
"2.5": (1600, 640),
|
|
"2.89": (1664, 576),
|
|
"3.0": (1728, 576),
|
|
}
|
|
|
|
VERSION2SPECS = {
|
|
"SDXL-base-1.0": {
|
|
"H": 1024,
|
|
"W": 1024,
|
|
"C": 4,
|
|
"f": 8,
|
|
"is_legacy": False,
|
|
"config": "configs/inference/sd_xl_base.yaml",
|
|
"ckpt": "checkpoints/sd_xl_base_1.0.safetensors",
|
|
},
|
|
"SDXL-base-0.9": {
|
|
"H": 1024,
|
|
"W": 1024,
|
|
"C": 4,
|
|
"f": 8,
|
|
"is_legacy": False,
|
|
"config": "configs/inference/sd_xl_base.yaml",
|
|
"ckpt": "checkpoints/sd_xl_base_0.9.safetensors",
|
|
},
|
|
"SD-2.1": {
|
|
"H": 512,
|
|
"W": 512,
|
|
"C": 4,
|
|
"f": 8,
|
|
"is_legacy": True,
|
|
"config": "configs/inference/sd_2_1.yaml",
|
|
"ckpt": "checkpoints/v2-1_512-ema-pruned.safetensors",
|
|
},
|
|
"SD-2.1-768": {
|
|
"H": 768,
|
|
"W": 768,
|
|
"C": 4,
|
|
"f": 8,
|
|
"is_legacy": True,
|
|
"config": "configs/inference/sd_2_1_768.yaml",
|
|
"ckpt": "checkpoints/v2-1_768-ema-pruned.safetensors",
|
|
},
|
|
"SDXL-refiner-0.9": {
|
|
"H": 1024,
|
|
"W": 1024,
|
|
"C": 4,
|
|
"f": 8,
|
|
"is_legacy": True,
|
|
"config": "configs/inference/sd_xl_refiner.yaml",
|
|
"ckpt": "checkpoints/sd_xl_refiner_0.9.safetensors",
|
|
},
|
|
"SDXL-refiner-1.0": {
|
|
"H": 1024,
|
|
"W": 1024,
|
|
"C": 4,
|
|
"f": 8,
|
|
"is_legacy": True,
|
|
"config": "configs/inference/sd_xl_refiner.yaml",
|
|
"ckpt": "checkpoints/sd_xl_refiner_1.0.safetensors",
|
|
},
|
|
}
|
|
|
|
|
|
def load_img(display=True, key=None, device="cuda"):
|
|
image = get_interactive_image(key=key)
|
|
if image is None:
|
|
return None
|
|
if display:
|
|
st.image(image)
|
|
w, h = image.size
|
|
print(f"loaded input image of size ({w}, {h})")
|
|
width, height = map(
|
|
lambda x: x - x % 64, (w, h)
|
|
) # resize to integer multiple of 64
|
|
image = image.resize((width, height))
|
|
image = np.array(image.convert("RGB"))
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
return image.to(device)
|
|
|
|
|
|
def run_txt2img(
|
|
state,
|
|
version,
|
|
version_dict,
|
|
is_legacy=False,
|
|
return_latents=False,
|
|
filter=None,
|
|
stage2strength=None,
|
|
):
|
|
if version.startswith("SDXL-base"):
|
|
W, H = st.selectbox("Resolution:", list(SD_XL_BASE_RATIOS.values()), 10)
|
|
else:
|
|
H = st.number_input("H", value=version_dict["H"], min_value=64, max_value=2048)
|
|
W = st.number_input("W", value=version_dict["W"], min_value=64, max_value=2048)
|
|
C = version_dict["C"]
|
|
F = version_dict["f"]
|
|
|
|
init_dict = {
|
|
"orig_width": W,
|
|
"orig_height": H,
|
|
"target_width": W,
|
|
"target_height": H,
|
|
}
|
|
value_dict = init_embedder_options(
|
|
get_unique_embedder_keys_from_conditioner(state["model"].conditioner),
|
|
init_dict,
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
)
|
|
sampler, num_rows, num_cols = init_sampling(stage2strength=stage2strength)
|
|
num_samples = num_rows * num_cols
|
|
|
|
if st.button("Sample"):
|
|
st.write(f"**Model I:** {version}")
|
|
out = do_sample(
|
|
state["model"],
|
|
sampler,
|
|
value_dict,
|
|
num_samples,
|
|
H,
|
|
W,
|
|
C,
|
|
F,
|
|
force_uc_zero_embeddings=["txt"] if not is_legacy else [],
|
|
return_latents=return_latents,
|
|
filter=filter,
|
|
)
|
|
return out
|
|
|
|
|
|
def run_img2img(
|
|
state,
|
|
version_dict,
|
|
is_legacy=False,
|
|
return_latents=False,
|
|
filter=None,
|
|
stage2strength=None,
|
|
):
|
|
img = load_img()
|
|
if img is None:
|
|
return None
|
|
H, W = img.shape[2], img.shape[3]
|
|
|
|
init_dict = {
|
|
"orig_width": W,
|
|
"orig_height": H,
|
|
"target_width": W,
|
|
"target_height": H,
|
|
}
|
|
value_dict = init_embedder_options(
|
|
get_unique_embedder_keys_from_conditioner(state["model"].conditioner),
|
|
init_dict,
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
)
|
|
strength = st.number_input(
|
|
"**Img2Img Strength**", value=0.75, min_value=0.0, max_value=1.0
|
|
)
|
|
sampler, num_rows, num_cols = init_sampling(
|
|
img2img_strength=strength,
|
|
stage2strength=stage2strength,
|
|
)
|
|
num_samples = num_rows * num_cols
|
|
|
|
if st.button("Sample"):
|
|
out = do_img2img(
|
|
repeat(img, "1 ... -> n ...", n=num_samples),
|
|
state["model"],
|
|
sampler,
|
|
value_dict,
|
|
num_samples,
|
|
force_uc_zero_embeddings=["txt"] if not is_legacy else [],
|
|
return_latents=return_latents,
|
|
filter=filter,
|
|
)
|
|
return out
|
|
|
|
|
|
def apply_refiner(
|
|
input,
|
|
state,
|
|
sampler,
|
|
num_samples,
|
|
prompt,
|
|
negative_prompt,
|
|
filter=None,
|
|
finish_denoising=False,
|
|
):
|
|
init_dict = {
|
|
"orig_width": input.shape[3] * 8,
|
|
"orig_height": input.shape[2] * 8,
|
|
"target_width": input.shape[3] * 8,
|
|
"target_height": input.shape[2] * 8,
|
|
}
|
|
|
|
value_dict = init_dict
|
|
value_dict["prompt"] = prompt
|
|
value_dict["negative_prompt"] = negative_prompt
|
|
|
|
value_dict["crop_coords_top"] = 0
|
|
value_dict["crop_coords_left"] = 0
|
|
|
|
value_dict["aesthetic_score"] = 6.0
|
|
value_dict["negative_aesthetic_score"] = 2.5
|
|
|
|
st.warning(f"refiner input shape: {input.shape}")
|
|
samples = do_img2img(
|
|
input,
|
|
state["model"],
|
|
sampler,
|
|
value_dict,
|
|
num_samples,
|
|
skip_encode=True,
|
|
filter=filter,
|
|
add_noise=not finish_denoising,
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
if __name__ == "__main__":
|
|
st.title("Stable Diffusion")
|
|
version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0)
|
|
version_dict = VERSION2SPECS[version]
|
|
mode = st.radio("Mode", ("txt2img", "img2img"), 0)
|
|
st.write("__________________________")
|
|
|
|
set_lowvram_mode(st.checkbox("Low vram mode", True))
|
|
|
|
if version.startswith("SDXL-base"):
|
|
add_pipeline = st.checkbox("Load SDXL-refiner?", False)
|
|
st.write("__________________________")
|
|
else:
|
|
add_pipeline = False
|
|
|
|
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
|
|
seed_everything(seed)
|
|
|
|
save_locally, save_path = init_save_locally(os.path.join(SAVE_PATH, version))
|
|
|
|
state = init_st(version_dict, load_filter=True)
|
|
if state["msg"]:
|
|
st.info(state["msg"])
|
|
model = state["model"]
|
|
|
|
is_legacy = version_dict["is_legacy"]
|
|
|
|
prompt = st.text_input(
|
|
"prompt",
|
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
)
|
|
if is_legacy:
|
|
negative_prompt = st.text_input("negative prompt", "")
|
|
else:
|
|
negative_prompt = "" # which is unused
|
|
|
|
stage2strength = None
|
|
finish_denoising = False
|
|
|
|
if add_pipeline:
|
|
st.write("__________________________")
|
|
version2 = st.selectbox("Refiner:", ["SDXL-refiner-1.0", "SDXL-refiner-0.9"])
|
|
st.warning(
|
|
f"Running with {version2} as the second stage model. Make sure to provide (V)RAM :) "
|
|
)
|
|
st.write("**Refiner Options:**")
|
|
|
|
version_dict2 = VERSION2SPECS[version2]
|
|
state2 = init_st(version_dict2, load_filter=False)
|
|
st.info(state2["msg"])
|
|
|
|
stage2strength = st.number_input(
|
|
"**Refinement strength**", value=0.15, min_value=0.0, max_value=1.0
|
|
)
|
|
|
|
sampler2, *_ = init_sampling(
|
|
key=2,
|
|
img2img_strength=stage2strength,
|
|
specify_num_samples=False,
|
|
)
|
|
st.write("__________________________")
|
|
finish_denoising = st.checkbox("Finish denoising with refiner.", True)
|
|
if not finish_denoising:
|
|
stage2strength = None
|
|
|
|
if mode == "txt2img":
|
|
out = run_txt2img(
|
|
state,
|
|
version,
|
|
version_dict,
|
|
is_legacy=is_legacy,
|
|
return_latents=add_pipeline,
|
|
filter=state.get("filter"),
|
|
stage2strength=stage2strength,
|
|
)
|
|
elif mode == "img2img":
|
|
out = run_img2img(
|
|
state,
|
|
version_dict,
|
|
is_legacy=is_legacy,
|
|
return_latents=add_pipeline,
|
|
filter=state.get("filter"),
|
|
stage2strength=stage2strength,
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown mode {mode}")
|
|
if isinstance(out, (tuple, list)):
|
|
samples, samples_z = out
|
|
else:
|
|
samples = out
|
|
samples_z = None
|
|
|
|
if add_pipeline and samples_z is not None:
|
|
st.write("**Running Refinement Stage**")
|
|
samples = apply_refiner(
|
|
samples_z,
|
|
state2,
|
|
sampler2,
|
|
samples_z.shape[0],
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt if is_legacy else "",
|
|
filter=state.get("filter"),
|
|
finish_denoising=finish_denoising,
|
|
)
|
|
|
|
if save_locally and samples is not None:
|
|
perform_save_locally(save_path, samples)
|