mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 14:24:21 +01:00
279 lines
9.9 KiB
Python
279 lines
9.9 KiB
Python
import math
|
|
import os
|
|
from glob import glob
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange, repeat
|
|
from fire import Fire
|
|
from omegaconf import OmegaConf
|
|
from PIL import Image
|
|
from torchvision.transforms import ToTensor
|
|
|
|
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
|
DeepFloydDataFiltering
|
|
from sgm.inference.helpers import embed_watermark
|
|
from sgm.util import default, instantiate_from_config
|
|
|
|
|
|
def sample(
|
|
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
|
num_frames: Optional[int] = None,
|
|
num_steps: Optional[int] = None,
|
|
version: str = "svd",
|
|
fps_id: int = 6,
|
|
motion_bucket_id: int = 127,
|
|
cond_aug: float = 0.02,
|
|
seed: int = 23,
|
|
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
|
device: str = "cuda",
|
|
output_folder: Optional[str] = None,
|
|
):
|
|
"""
|
|
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
|
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
|
"""
|
|
|
|
if version == "svd":
|
|
num_frames = default(num_frames, 14)
|
|
num_steps = default(num_steps, 25)
|
|
output_folder = default(output_folder, "outputs/simple_video_sample/svd/")
|
|
model_config = "scripts/sampling/configs/svd.yaml"
|
|
elif version == "svd_xt":
|
|
num_frames = default(num_frames, 25)
|
|
num_steps = default(num_steps, 30)
|
|
output_folder = default(output_folder, "outputs/simple_video_sample/svd_xt/")
|
|
model_config = "scripts/sampling/configs/svd_xt.yaml"
|
|
elif version == "svd_image_decoder":
|
|
num_frames = default(num_frames, 14)
|
|
num_steps = default(num_steps, 25)
|
|
output_folder = default(
|
|
output_folder, "outputs/simple_video_sample/svd_image_decoder/"
|
|
)
|
|
model_config = "scripts/sampling/configs/svd_image_decoder.yaml"
|
|
elif version == "svd_xt_image_decoder":
|
|
num_frames = default(num_frames, 25)
|
|
num_steps = default(num_steps, 30)
|
|
output_folder = default(
|
|
output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/"
|
|
)
|
|
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml"
|
|
else:
|
|
raise ValueError(f"Version {version} does not exist.")
|
|
|
|
model, filter = load_model(
|
|
model_config,
|
|
device,
|
|
num_frames,
|
|
num_steps,
|
|
)
|
|
torch.manual_seed(seed)
|
|
|
|
path = Path(input_path)
|
|
all_img_paths = []
|
|
if path.is_file():
|
|
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
|
all_img_paths = [input_path]
|
|
else:
|
|
raise ValueError("Path is not valid image file.")
|
|
elif path.is_dir():
|
|
all_img_paths = sorted(
|
|
[
|
|
f
|
|
for f in path.iterdir()
|
|
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
|
]
|
|
)
|
|
if len(all_img_paths) == 0:
|
|
raise ValueError("Folder does not contain any images.")
|
|
else:
|
|
raise ValueError
|
|
|
|
for input_img_path in all_img_paths:
|
|
with Image.open(input_img_path) as image:
|
|
if image.mode == "RGBA":
|
|
image = image.convert("RGB")
|
|
w, h = image.size
|
|
|
|
if h % 64 != 0 or w % 64 != 0:
|
|
width, height = map(lambda x: x - x % 64, (w, h))
|
|
image = image.resize((width, height))
|
|
print(
|
|
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
|
)
|
|
|
|
image = ToTensor()(image)
|
|
image = image * 2.0 - 1.0
|
|
|
|
image = image.unsqueeze(0).to(device)
|
|
H, W = image.shape[2:]
|
|
assert image.shape[1] == 3
|
|
F = 8
|
|
C = 4
|
|
shape = (num_frames, C, H // F, W // F)
|
|
if (H, W) != (576, 1024):
|
|
print(
|
|
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
|
)
|
|
if motion_bucket_id > 255:
|
|
print(
|
|
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
|
)
|
|
|
|
if fps_id < 5:
|
|
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
|
|
|
if fps_id > 30:
|
|
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
|
|
|
value_dict = {}
|
|
value_dict["motion_bucket_id"] = motion_bucket_id
|
|
value_dict["fps_id"] = fps_id
|
|
value_dict["cond_aug"] = cond_aug
|
|
value_dict["cond_frames_without_noise"] = image
|
|
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
|
value_dict["cond_aug"] = cond_aug
|
|
|
|
with torch.no_grad():
|
|
with torch.autocast(device):
|
|
batch, batch_uc = get_batch(
|
|
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
|
value_dict,
|
|
[1, num_frames],
|
|
T=num_frames,
|
|
device=device,
|
|
)
|
|
c, uc = model.conditioner.get_unconditional_conditioning(
|
|
batch,
|
|
batch_uc=batch_uc,
|
|
force_uc_zero_embeddings=[
|
|
"cond_frames",
|
|
"cond_frames_without_noise",
|
|
],
|
|
)
|
|
|
|
for k in ["crossattn", "concat"]:
|
|
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
|
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
|
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
|
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
|
|
|
randn = torch.randn(shape, device=device)
|
|
|
|
additional_model_inputs = {}
|
|
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
|
2, num_frames
|
|
).to(device)
|
|
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
|
|
|
def denoiser(input, sigma, c):
|
|
return model.denoiser(
|
|
model.model, input, sigma, c, **additional_model_inputs
|
|
)
|
|
|
|
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
|
model.en_and_decode_n_samples_a_time = decoding_t
|
|
samples_x = model.decode_first_stage(samples_z)
|
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
|
writer = cv2.VideoWriter(
|
|
video_path,
|
|
cv2.VideoWriter_fourcc(*"MP4V"),
|
|
fps_id + 1,
|
|
(samples.shape[-1], samples.shape[-2]),
|
|
)
|
|
|
|
samples = embed_watermark(samples)
|
|
samples = filter(samples)
|
|
vid = (
|
|
(rearrange(samples, "t c h w -> t h w c") * 255)
|
|
.cpu()
|
|
.numpy()
|
|
.astype(np.uint8)
|
|
)
|
|
for frame in vid:
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
writer.write(frame)
|
|
writer.release()
|
|
|
|
|
|
def get_unique_embedder_keys_from_conditioner(conditioner):
|
|
return list(set([x.input_key for x in conditioner.embedders]))
|
|
|
|
|
|
def get_batch(keys, value_dict, N, T, device):
|
|
batch = {}
|
|
batch_uc = {}
|
|
|
|
for key in keys:
|
|
if key == "fps_id":
|
|
batch[key] = (
|
|
torch.tensor([value_dict["fps_id"]])
|
|
.to(device)
|
|
.repeat(int(math.prod(N)))
|
|
)
|
|
elif key == "motion_bucket_id":
|
|
batch[key] = (
|
|
torch.tensor([value_dict["motion_bucket_id"]])
|
|
.to(device)
|
|
.repeat(int(math.prod(N)))
|
|
)
|
|
elif key == "cond_aug":
|
|
batch[key] = repeat(
|
|
torch.tensor([value_dict["cond_aug"]]).to(device),
|
|
"1 -> b",
|
|
b=math.prod(N),
|
|
)
|
|
elif key == "cond_frames":
|
|
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
|
elif key == "cond_frames_without_noise":
|
|
batch[key] = repeat(
|
|
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
|
)
|
|
else:
|
|
batch[key] = value_dict[key]
|
|
|
|
if T is not None:
|
|
batch["num_video_frames"] = T
|
|
|
|
for key in batch.keys():
|
|
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
|
batch_uc[key] = torch.clone(batch[key])
|
|
return batch, batch_uc
|
|
|
|
|
|
def load_model(
|
|
config: str,
|
|
device: str,
|
|
num_frames: int,
|
|
num_steps: int,
|
|
):
|
|
config = OmegaConf.load(config)
|
|
if device == "cuda":
|
|
config.model.params.conditioner_config.params.emb_models[
|
|
0
|
|
].params.open_clip_embedding_config.params.init_device = device
|
|
|
|
config.model.params.sampler_config.params.num_steps = num_steps
|
|
config.model.params.sampler_config.params.guider_config.params.num_frames = (
|
|
num_frames
|
|
)
|
|
if device == "cuda":
|
|
with torch.device(device):
|
|
model = instantiate_from_config(config.model).to(device).eval()
|
|
else:
|
|
model = instantiate_from_config(config.model).to(device).eval()
|
|
|
|
filter = DeepFloydDataFiltering(verbose=False, device=device)
|
|
return model, filter
|
|
|
|
|
|
if __name__ == "__main__":
|
|
Fire(sample)
|