Files
generative-models/sgm/modules/diffusionmodules/discretizer.py
Andreas Blattmann 081e0d4629 soon is now
2023-06-22 09:53:12 -07:00

66 lines
2.2 KiB
Python

import torch
import numpy as np
from functools import partial
from ...util import append_zero
from ...modules.diffusionmodules.util import make_beta_schedule
class Discretization:
def __call__(self, n, do_append_zero=True, device="cuda", flip=False):
sigmas = self.get_sigmas(n, device)
sigmas = append_zero(sigmas) if do_append_zero else sigmas
return sigmas if not flip else torch.flip(sigmas, (0,))
class EDMDiscretization(Discretization):
def __init__(self, sigma_min=0.02, sigma_max=80.0, rho=7.0):
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.rho = rho
def get_sigmas(self, n, device):
ramp = torch.linspace(0, 1, n, device=device)
min_inv_rho = self.sigma_min ** (1 / self.rho)
max_inv_rho = self.sigma_max ** (1 / self.rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** self.rho
return sigmas
class LegacyDDPMDiscretization(Discretization):
def __init__(
self,
linear_start=0.00085,
linear_end=0.0120,
num_timesteps=1000,
legacy_range=True,
):
self.num_timesteps = num_timesteps
betas = make_beta_schedule(
"linear", num_timesteps, linear_start=linear_start, linear_end=linear_end
)
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.to_torch = partial(torch.tensor, dtype=torch.float32)
self.legacy_range = legacy_range
def get_sigmas(self, n, device):
if n < self.num_timesteps:
c = self.num_timesteps // n
if self.legacy_range:
timesteps = np.asarray(list(range(0, self.num_timesteps, c)))
timesteps += 1 # Legacy LDM Hack
else:
timesteps = np.asarray(list(range(0, self.num_timesteps + 1, c)))
timesteps -= 1
timesteps = timesteps[1:]
alphas_cumprod = self.alphas_cumprod[timesteps]
else:
alphas_cumprod = self.alphas_cumprod
to_torch = partial(torch.tensor, dtype=torch.float32, device=device)
sigmas = to_torch((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
return torch.flip(sigmas, (0,))