mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-17 21:34:21 +01:00
* clean requirements * rm taming deps * isort, black * mv lipips, license * clean vq, fix path * fix loss path, gitignore * tested requirements pt13 * fix numpy req for python3.8, add tests * fix name * fix dep scipy 3.8 pt2 * add black test formatter
944 lines
33 KiB
Python
944 lines
33 KiB
Python
import argparse
|
|
import datetime
|
|
import glob
|
|
import inspect
|
|
import os
|
|
import sys
|
|
from inspect import Parameter
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
import torchvision
|
|
import wandb
|
|
from matplotlib import pyplot as plt
|
|
from natsort import natsorted
|
|
from omegaconf import OmegaConf
|
|
from packaging import version
|
|
from PIL import Image
|
|
from pytorch_lightning import seed_everything
|
|
from pytorch_lightning.callbacks import Callback
|
|
from pytorch_lightning.loggers import WandbLogger
|
|
from pytorch_lightning.trainer import Trainer
|
|
from pytorch_lightning.utilities import rank_zero_only
|
|
|
|
from sgm.util import exists, instantiate_from_config, isheatmap
|
|
|
|
MULTINODE_HACKS = True
|
|
|
|
|
|
def default_trainer_args():
|
|
argspec = dict(inspect.signature(Trainer.__init__).parameters)
|
|
argspec.pop("self")
|
|
default_args = {
|
|
param: argspec[param].default
|
|
for param in argspec
|
|
if argspec[param] != Parameter.empty
|
|
}
|
|
return default_args
|
|
|
|
|
|
def get_parser(**parser_kwargs):
|
|
def str2bool(v):
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ("yes", "true", "t", "y", "1"):
|
|
return True
|
|
elif v.lower() in ("no", "false", "f", "n", "0"):
|
|
return False
|
|
else:
|
|
raise argparse.ArgumentTypeError("Boolean value expected.")
|
|
|
|
parser = argparse.ArgumentParser(**parser_kwargs)
|
|
parser.add_argument(
|
|
"-n",
|
|
"--name",
|
|
type=str,
|
|
const=True,
|
|
default="",
|
|
nargs="?",
|
|
help="postfix for logdir",
|
|
)
|
|
parser.add_argument(
|
|
"--no_date",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
help="if True, skip date generation for logdir and only use naming via opt.base or opt.name (+ opt.postfix, optionally)",
|
|
)
|
|
parser.add_argument(
|
|
"-r",
|
|
"--resume",
|
|
type=str,
|
|
const=True,
|
|
default="",
|
|
nargs="?",
|
|
help="resume from logdir or checkpoint in logdir",
|
|
)
|
|
parser.add_argument(
|
|
"-b",
|
|
"--base",
|
|
nargs="*",
|
|
metavar="base_config.yaml",
|
|
help="paths to base configs. Loaded from left-to-right. "
|
|
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
|
|
default=list(),
|
|
)
|
|
parser.add_argument(
|
|
"-t",
|
|
"--train",
|
|
type=str2bool,
|
|
const=True,
|
|
default=True,
|
|
nargs="?",
|
|
help="train",
|
|
)
|
|
parser.add_argument(
|
|
"--no-test",
|
|
type=str2bool,
|
|
const=True,
|
|
default=False,
|
|
nargs="?",
|
|
help="disable test",
|
|
)
|
|
parser.add_argument(
|
|
"-p", "--project", help="name of new or path to existing project"
|
|
)
|
|
parser.add_argument(
|
|
"-d",
|
|
"--debug",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
help="enable post-mortem debugging",
|
|
)
|
|
parser.add_argument(
|
|
"-s",
|
|
"--seed",
|
|
type=int,
|
|
default=23,
|
|
help="seed for seed_everything",
|
|
)
|
|
parser.add_argument(
|
|
"-f",
|
|
"--postfix",
|
|
type=str,
|
|
default="",
|
|
help="post-postfix for default name",
|
|
)
|
|
parser.add_argument(
|
|
"--projectname",
|
|
type=str,
|
|
default="stablediffusion",
|
|
)
|
|
parser.add_argument(
|
|
"-l",
|
|
"--logdir",
|
|
type=str,
|
|
default="logs",
|
|
help="directory for logging dat shit",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
help="scale base-lr by ngpu * batch_size * n_accumulate",
|
|
)
|
|
parser.add_argument(
|
|
"--legacy_naming",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
help="name run based on config file name if true, else by whole path",
|
|
)
|
|
parser.add_argument(
|
|
"--enable_tf32",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
help="enables the TensorFloat32 format both for matmuls and cuDNN for pytorch 1.12",
|
|
)
|
|
parser.add_argument(
|
|
"--startup",
|
|
type=str,
|
|
default=None,
|
|
help="Startuptime from distributed script",
|
|
)
|
|
parser.add_argument(
|
|
"--wandb",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False, # TODO: later default to True
|
|
help="log to wandb",
|
|
)
|
|
parser.add_argument(
|
|
"--no_base_name",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False, # TODO: later default to True
|
|
help="log to wandb",
|
|
)
|
|
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help="single checkpoint file to resume from",
|
|
)
|
|
default_args = default_trainer_args()
|
|
for key in default_args:
|
|
parser.add_argument("--" + key, default=default_args[key])
|
|
return parser
|
|
|
|
|
|
def get_checkpoint_name(logdir):
|
|
ckpt = os.path.join(logdir, "checkpoints", "last**.ckpt")
|
|
ckpt = natsorted(glob.glob(ckpt))
|
|
print('available "last" checkpoints:')
|
|
print(ckpt)
|
|
if len(ckpt) > 1:
|
|
print("got most recent checkpoint")
|
|
ckpt = sorted(ckpt, key=lambda x: os.path.getmtime(x))[-1]
|
|
print(f"Most recent ckpt is {ckpt}")
|
|
with open(os.path.join(logdir, "most_recent_ckpt.txt"), "w") as f:
|
|
f.write(ckpt + "\n")
|
|
try:
|
|
version = int(ckpt.split("/")[-1].split("-v")[-1].split(".")[0])
|
|
except Exception as e:
|
|
print("version confusion but not bad")
|
|
print(e)
|
|
version = 1
|
|
# version = last_version + 1
|
|
else:
|
|
# in this case, we only have one "last.ckpt"
|
|
ckpt = ckpt[0]
|
|
version = 1
|
|
melk_ckpt_name = f"last-v{version}.ckpt"
|
|
print(f"Current melk ckpt name: {melk_ckpt_name}")
|
|
return ckpt, melk_ckpt_name
|
|
|
|
|
|
class SetupCallback(Callback):
|
|
def __init__(
|
|
self,
|
|
resume,
|
|
now,
|
|
logdir,
|
|
ckptdir,
|
|
cfgdir,
|
|
config,
|
|
lightning_config,
|
|
debug,
|
|
ckpt_name=None,
|
|
):
|
|
super().__init__()
|
|
self.resume = resume
|
|
self.now = now
|
|
self.logdir = logdir
|
|
self.ckptdir = ckptdir
|
|
self.cfgdir = cfgdir
|
|
self.config = config
|
|
self.lightning_config = lightning_config
|
|
self.debug = debug
|
|
self.ckpt_name = ckpt_name
|
|
|
|
def on_exception(self, trainer: pl.Trainer, pl_module, exception):
|
|
if not self.debug and trainer.global_rank == 0:
|
|
print("Summoning checkpoint.")
|
|
if self.ckpt_name is None:
|
|
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
|
|
else:
|
|
ckpt_path = os.path.join(self.ckptdir, self.ckpt_name)
|
|
trainer.save_checkpoint(ckpt_path)
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
if trainer.global_rank == 0:
|
|
# Create logdirs and save configs
|
|
os.makedirs(self.logdir, exist_ok=True)
|
|
os.makedirs(self.ckptdir, exist_ok=True)
|
|
os.makedirs(self.cfgdir, exist_ok=True)
|
|
|
|
if "callbacks" in self.lightning_config:
|
|
if (
|
|
"metrics_over_trainsteps_checkpoint"
|
|
in self.lightning_config["callbacks"]
|
|
):
|
|
os.makedirs(
|
|
os.path.join(self.ckptdir, "trainstep_checkpoints"),
|
|
exist_ok=True,
|
|
)
|
|
print("Project config")
|
|
print(OmegaConf.to_yaml(self.config))
|
|
if MULTINODE_HACKS:
|
|
import time
|
|
|
|
time.sleep(5)
|
|
OmegaConf.save(
|
|
self.config,
|
|
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)),
|
|
)
|
|
|
|
print("Lightning config")
|
|
print(OmegaConf.to_yaml(self.lightning_config))
|
|
OmegaConf.save(
|
|
OmegaConf.create({"lightning": self.lightning_config}),
|
|
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)),
|
|
)
|
|
|
|
else:
|
|
# ModelCheckpoint callback created log directory --- remove it
|
|
if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
|
|
dst, name = os.path.split(self.logdir)
|
|
dst = os.path.join(dst, "child_runs", name)
|
|
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
|
try:
|
|
os.rename(self.logdir, dst)
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
|
|
class ImageLogger(Callback):
|
|
def __init__(
|
|
self,
|
|
batch_frequency,
|
|
max_images,
|
|
clamp=True,
|
|
increase_log_steps=True,
|
|
rescale=True,
|
|
disabled=False,
|
|
log_on_batch_idx=False,
|
|
log_first_step=False,
|
|
log_images_kwargs=None,
|
|
log_before_first_step=False,
|
|
enable_autocast=True,
|
|
):
|
|
super().__init__()
|
|
self.enable_autocast = enable_autocast
|
|
self.rescale = rescale
|
|
self.batch_freq = batch_frequency
|
|
self.max_images = max_images
|
|
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
|
|
if not increase_log_steps:
|
|
self.log_steps = [self.batch_freq]
|
|
self.clamp = clamp
|
|
self.disabled = disabled
|
|
self.log_on_batch_idx = log_on_batch_idx
|
|
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
|
self.log_first_step = log_first_step
|
|
self.log_before_first_step = log_before_first_step
|
|
|
|
@rank_zero_only
|
|
def log_local(
|
|
self,
|
|
save_dir,
|
|
split,
|
|
images,
|
|
global_step,
|
|
current_epoch,
|
|
batch_idx,
|
|
pl_module: Union[None, pl.LightningModule] = None,
|
|
):
|
|
root = os.path.join(save_dir, "images", split)
|
|
for k in images:
|
|
if isheatmap(images[k]):
|
|
fig, ax = plt.subplots()
|
|
ax = ax.matshow(
|
|
images[k].cpu().numpy(), cmap="hot", interpolation="lanczos"
|
|
)
|
|
plt.colorbar(ax)
|
|
plt.axis("off")
|
|
|
|
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
|
k, global_step, current_epoch, batch_idx
|
|
)
|
|
os.makedirs(root, exist_ok=True)
|
|
path = os.path.join(root, filename)
|
|
plt.savefig(path)
|
|
plt.close()
|
|
# TODO: support wandb
|
|
else:
|
|
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
|
if self.rescale:
|
|
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
|
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
|
grid = grid.numpy()
|
|
grid = (grid * 255).astype(np.uint8)
|
|
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
|
k, global_step, current_epoch, batch_idx
|
|
)
|
|
path = os.path.join(root, filename)
|
|
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
|
img = Image.fromarray(grid)
|
|
img.save(path)
|
|
if exists(pl_module):
|
|
assert isinstance(
|
|
pl_module.logger, WandbLogger
|
|
), "logger_log_image only supports WandbLogger currently"
|
|
pl_module.logger.log_image(
|
|
key=f"{split}/{k}",
|
|
images=[
|
|
img,
|
|
],
|
|
step=pl_module.global_step,
|
|
)
|
|
|
|
@rank_zero_only
|
|
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
|
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
|
|
if (
|
|
self.check_frequency(check_idx)
|
|
and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0
|
|
and callable(pl_module.log_images)
|
|
and
|
|
# batch_idx > 5 and
|
|
self.max_images > 0
|
|
):
|
|
logger = type(pl_module.logger)
|
|
is_train = pl_module.training
|
|
if is_train:
|
|
pl_module.eval()
|
|
|
|
gpu_autocast_kwargs = {
|
|
"enabled": self.enable_autocast, # torch.is_autocast_enabled(),
|
|
"dtype": torch.get_autocast_gpu_dtype(),
|
|
"cache_enabled": torch.is_autocast_cache_enabled(),
|
|
}
|
|
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
|
|
images = pl_module.log_images(
|
|
batch, split=split, **self.log_images_kwargs
|
|
)
|
|
|
|
for k in images:
|
|
N = min(images[k].shape[0], self.max_images)
|
|
if not isheatmap(images[k]):
|
|
images[k] = images[k][:N]
|
|
if isinstance(images[k], torch.Tensor):
|
|
images[k] = images[k].detach().float().cpu()
|
|
if self.clamp and not isheatmap(images[k]):
|
|
images[k] = torch.clamp(images[k], -1.0, 1.0)
|
|
|
|
self.log_local(
|
|
pl_module.logger.save_dir,
|
|
split,
|
|
images,
|
|
pl_module.global_step,
|
|
pl_module.current_epoch,
|
|
batch_idx,
|
|
pl_module=pl_module
|
|
if isinstance(pl_module.logger, WandbLogger)
|
|
else None,
|
|
)
|
|
|
|
if is_train:
|
|
pl_module.train()
|
|
|
|
def check_frequency(self, check_idx):
|
|
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
|
|
check_idx > 0 or self.log_first_step
|
|
):
|
|
try:
|
|
self.log_steps.pop(0)
|
|
except IndexError as e:
|
|
print(e)
|
|
pass
|
|
return True
|
|
return False
|
|
|
|
@rank_zero_only
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
|
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
|
|
self.log_img(pl_module, batch, batch_idx, split="train")
|
|
|
|
@rank_zero_only
|
|
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
|
|
if self.log_before_first_step and pl_module.global_step == 0:
|
|
print(f"{self.__class__.__name__}: logging before training")
|
|
self.log_img(pl_module, batch, batch_idx, split="train")
|
|
|
|
@rank_zero_only
|
|
def on_validation_batch_end(
|
|
self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs
|
|
):
|
|
if not self.disabled and pl_module.global_step > 0:
|
|
self.log_img(pl_module, batch, batch_idx, split="val")
|
|
if hasattr(pl_module, "calibrate_grad_norm"):
|
|
if (
|
|
pl_module.calibrate_grad_norm and batch_idx % 25 == 0
|
|
) and batch_idx > 0:
|
|
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|
|
|
|
|
|
@rank_zero_only
|
|
def init_wandb(save_dir, opt, config, group_name, name_str):
|
|
print(f"setting WANDB_DIR to {save_dir}")
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
os.environ["WANDB_DIR"] = save_dir
|
|
if opt.debug:
|
|
wandb.init(project=opt.projectname, mode="offline", group=group_name)
|
|
else:
|
|
wandb.init(
|
|
project=opt.projectname,
|
|
config=config,
|
|
settings=wandb.Settings(code_dir="./sgm"),
|
|
group=group_name,
|
|
name=name_str,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# custom parser to specify config files, train, test and debug mode,
|
|
# postfix, resume.
|
|
# `--key value` arguments are interpreted as arguments to the trainer.
|
|
# `nested.key=value` arguments are interpreted as config parameters.
|
|
# configs are merged from left-to-right followed by command line parameters.
|
|
|
|
# model:
|
|
# base_learning_rate: float
|
|
# target: path to lightning module
|
|
# params:
|
|
# key: value
|
|
# data:
|
|
# target: main.DataModuleFromConfig
|
|
# params:
|
|
# batch_size: int
|
|
# wrap: bool
|
|
# train:
|
|
# target: path to train dataset
|
|
# params:
|
|
# key: value
|
|
# validation:
|
|
# target: path to validation dataset
|
|
# params:
|
|
# key: value
|
|
# test:
|
|
# target: path to test dataset
|
|
# params:
|
|
# key: value
|
|
# lightning: (optional, has sane defaults and can be specified on cmdline)
|
|
# trainer:
|
|
# additional arguments to trainer
|
|
# logger:
|
|
# logger to instantiate
|
|
# modelcheckpoint:
|
|
# modelcheckpoint to instantiate
|
|
# callbacks:
|
|
# callback1:
|
|
# target: importpath
|
|
# params:
|
|
# key: value
|
|
|
|
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
|
|
|
# add cwd for convenience and to make classes in this file available when
|
|
# running as `python main.py`
|
|
# (in particular `main.DataModuleFromConfig`)
|
|
sys.path.append(os.getcwd())
|
|
|
|
parser = get_parser()
|
|
|
|
opt, unknown = parser.parse_known_args()
|
|
|
|
if opt.name and opt.resume:
|
|
raise ValueError(
|
|
"-n/--name and -r/--resume cannot be specified both."
|
|
"If you want to resume training in a new log folder, "
|
|
"use -n/--name in combination with --resume_from_checkpoint"
|
|
)
|
|
melk_ckpt_name = None
|
|
name = None
|
|
if opt.resume:
|
|
if not os.path.exists(opt.resume):
|
|
raise ValueError("Cannot find {}".format(opt.resume))
|
|
if os.path.isfile(opt.resume):
|
|
paths = opt.resume.split("/")
|
|
# idx = len(paths)-paths[::-1].index("logs")+1
|
|
# logdir = "/".join(paths[:idx])
|
|
logdir = "/".join(paths[:-2])
|
|
ckpt = opt.resume
|
|
_, melk_ckpt_name = get_checkpoint_name(logdir)
|
|
else:
|
|
assert os.path.isdir(opt.resume), opt.resume
|
|
logdir = opt.resume.rstrip("/")
|
|
ckpt, melk_ckpt_name = get_checkpoint_name(logdir)
|
|
|
|
print("#" * 100)
|
|
print(f'Resuming from checkpoint "{ckpt}"')
|
|
print("#" * 100)
|
|
|
|
opt.resume_from_checkpoint = ckpt
|
|
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
|
|
opt.base = base_configs + opt.base
|
|
_tmp = logdir.split("/")
|
|
nowname = _tmp[-1]
|
|
else:
|
|
if opt.name:
|
|
name = "_" + opt.name
|
|
elif opt.base:
|
|
if opt.no_base_name:
|
|
name = ""
|
|
else:
|
|
if opt.legacy_naming:
|
|
cfg_fname = os.path.split(opt.base[0])[-1]
|
|
cfg_name = os.path.splitext(cfg_fname)[0]
|
|
else:
|
|
assert "configs" in os.path.split(opt.base[0])[0], os.path.split(
|
|
opt.base[0]
|
|
)[0]
|
|
cfg_path = os.path.split(opt.base[0])[0].split(os.sep)[
|
|
os.path.split(opt.base[0])[0].split(os.sep).index("configs")
|
|
+ 1 :
|
|
] # cut away the first one (we assert all configs are in "configs")
|
|
cfg_name = os.path.splitext(os.path.split(opt.base[0])[-1])[0]
|
|
cfg_name = "-".join(cfg_path) + f"-{cfg_name}"
|
|
name = "_" + cfg_name
|
|
else:
|
|
name = ""
|
|
if not opt.no_date:
|
|
nowname = now + name + opt.postfix
|
|
else:
|
|
nowname = name + opt.postfix
|
|
if nowname.startswith("_"):
|
|
nowname = nowname[1:]
|
|
logdir = os.path.join(opt.logdir, nowname)
|
|
print(f"LOGDIR: {logdir}")
|
|
|
|
ckptdir = os.path.join(logdir, "checkpoints")
|
|
cfgdir = os.path.join(logdir, "configs")
|
|
seed_everything(opt.seed, workers=True)
|
|
|
|
# move before model init, in case a torch.compile(...) is called somewhere
|
|
if opt.enable_tf32:
|
|
# pt_version = version.parse(torch.__version__)
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
print(f"Enabling TF32 for PyTorch {torch.__version__}")
|
|
else:
|
|
print(f"Using default TF32 settings for PyTorch {torch.__version__}:")
|
|
print(
|
|
f"torch.backends.cuda.matmul.allow_tf32={torch.backends.cuda.matmul.allow_tf32}"
|
|
)
|
|
print(f"torch.backends.cudnn.allow_tf32={torch.backends.cudnn.allow_tf32}")
|
|
|
|
try:
|
|
# init and save configs
|
|
configs = [OmegaConf.load(cfg) for cfg in opt.base]
|
|
cli = OmegaConf.from_dotlist(unknown)
|
|
config = OmegaConf.merge(*configs, cli)
|
|
lightning_config = config.pop("lightning", OmegaConf.create())
|
|
# merge trainer cli with config
|
|
trainer_config = lightning_config.get("trainer", OmegaConf.create())
|
|
|
|
# default to gpu
|
|
trainer_config["accelerator"] = "gpu"
|
|
#
|
|
standard_args = default_trainer_args()
|
|
for k in standard_args:
|
|
if getattr(opt, k) != standard_args[k]:
|
|
trainer_config[k] = getattr(opt, k)
|
|
|
|
ckpt_resume_path = opt.resume_from_checkpoint
|
|
|
|
if not "devices" in trainer_config and trainer_config["accelerator"] != "gpu":
|
|
del trainer_config["accelerator"]
|
|
cpu = True
|
|
else:
|
|
gpuinfo = trainer_config["devices"]
|
|
print(f"Running on GPUs {gpuinfo}")
|
|
cpu = False
|
|
trainer_opt = argparse.Namespace(**trainer_config)
|
|
lightning_config.trainer = trainer_config
|
|
|
|
# model
|
|
model = instantiate_from_config(config.model)
|
|
|
|
# trainer and callbacks
|
|
trainer_kwargs = dict()
|
|
|
|
# default logger configs
|
|
default_logger_cfgs = {
|
|
"wandb": {
|
|
"target": "pytorch_lightning.loggers.WandbLogger",
|
|
"params": {
|
|
"name": nowname,
|
|
# "save_dir": logdir,
|
|
"offline": opt.debug,
|
|
"id": nowname,
|
|
"project": opt.projectname,
|
|
"log_model": False,
|
|
# "dir": logdir,
|
|
},
|
|
},
|
|
"csv": {
|
|
"target": "pytorch_lightning.loggers.CSVLogger",
|
|
"params": {
|
|
"name": "testtube", # hack for sbord fanatics
|
|
"save_dir": logdir,
|
|
},
|
|
},
|
|
}
|
|
default_logger_cfg = default_logger_cfgs["wandb" if opt.wandb else "csv"]
|
|
if opt.wandb:
|
|
# TODO change once leaving "swiffer" config directory
|
|
try:
|
|
group_name = nowname.split(now)[-1].split("-")[1]
|
|
except:
|
|
group_name = nowname
|
|
default_logger_cfg["params"]["group"] = group_name
|
|
init_wandb(
|
|
os.path.join(os.getcwd(), logdir),
|
|
opt=opt,
|
|
group_name=group_name,
|
|
config=config,
|
|
name_str=nowname,
|
|
)
|
|
if "logger" in lightning_config:
|
|
logger_cfg = lightning_config.logger
|
|
else:
|
|
logger_cfg = OmegaConf.create()
|
|
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
|
|
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
|
|
|
|
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
|
|
# specify which metric is used to determine best models
|
|
default_modelckpt_cfg = {
|
|
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
|
"params": {
|
|
"dirpath": ckptdir,
|
|
"filename": "{epoch:06}",
|
|
"verbose": True,
|
|
"save_last": True,
|
|
},
|
|
}
|
|
if hasattr(model, "monitor"):
|
|
print(f"Monitoring {model.monitor} as checkpoint metric.")
|
|
default_modelckpt_cfg["params"]["monitor"] = model.monitor
|
|
default_modelckpt_cfg["params"]["save_top_k"] = 3
|
|
|
|
if "modelcheckpoint" in lightning_config:
|
|
modelckpt_cfg = lightning_config.modelcheckpoint
|
|
else:
|
|
modelckpt_cfg = OmegaConf.create()
|
|
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
|
|
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
|
|
|
|
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/strategy.html
|
|
# default to ddp if not further specified
|
|
default_strategy_config = {"target": "pytorch_lightning.strategies.DDPStrategy"}
|
|
|
|
if "strategy" in lightning_config:
|
|
strategy_cfg = lightning_config.strategy
|
|
else:
|
|
strategy_cfg = OmegaConf.create()
|
|
default_strategy_config["params"] = {
|
|
"find_unused_parameters": False,
|
|
# "static_graph": True,
|
|
# "ddp_comm_hook": default.fp16_compress_hook # TODO: experiment with this, also for DDPSharded
|
|
}
|
|
strategy_cfg = OmegaConf.merge(default_strategy_config, strategy_cfg)
|
|
print(
|
|
f"strategy config: \n ++++++++++++++ \n {strategy_cfg} \n ++++++++++++++ "
|
|
)
|
|
trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg)
|
|
|
|
# add callback which sets up log directory
|
|
default_callbacks_cfg = {
|
|
"setup_callback": {
|
|
"target": "main.SetupCallback",
|
|
"params": {
|
|
"resume": opt.resume,
|
|
"now": now,
|
|
"logdir": logdir,
|
|
"ckptdir": ckptdir,
|
|
"cfgdir": cfgdir,
|
|
"config": config,
|
|
"lightning_config": lightning_config,
|
|
"debug": opt.debug,
|
|
"ckpt_name": melk_ckpt_name,
|
|
},
|
|
},
|
|
"image_logger": {
|
|
"target": "main.ImageLogger",
|
|
"params": {"batch_frequency": 1000, "max_images": 4, "clamp": True},
|
|
},
|
|
"learning_rate_logger": {
|
|
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
|
|
"params": {
|
|
"logging_interval": "step",
|
|
# "log_momentum": True
|
|
},
|
|
},
|
|
}
|
|
if version.parse(pl.__version__) >= version.parse("1.4.0"):
|
|
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
|
|
|
|
if "callbacks" in lightning_config:
|
|
callbacks_cfg = lightning_config.callbacks
|
|
else:
|
|
callbacks_cfg = OmegaConf.create()
|
|
|
|
if "metrics_over_trainsteps_checkpoint" in callbacks_cfg:
|
|
print(
|
|
"Caution: Saving checkpoints every n train steps without deleting. This might require some free space."
|
|
)
|
|
default_metrics_over_trainsteps_ckpt_dict = {
|
|
"metrics_over_trainsteps_checkpoint": {
|
|
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
|
"params": {
|
|
"dirpath": os.path.join(ckptdir, "trainstep_checkpoints"),
|
|
"filename": "{epoch:06}-{step:09}",
|
|
"verbose": True,
|
|
"save_top_k": -1,
|
|
"every_n_train_steps": 10000,
|
|
"save_weights_only": True,
|
|
},
|
|
}
|
|
}
|
|
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
|
|
|
|
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
|
|
if "ignore_keys_callback" in callbacks_cfg and ckpt_resume_path is not None:
|
|
callbacks_cfg.ignore_keys_callback.params["ckpt_path"] = ckpt_resume_path
|
|
elif "ignore_keys_callback" in callbacks_cfg:
|
|
del callbacks_cfg["ignore_keys_callback"]
|
|
|
|
trainer_kwargs["callbacks"] = [
|
|
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
|
|
]
|
|
if not "plugins" in trainer_kwargs:
|
|
trainer_kwargs["plugins"] = list()
|
|
|
|
# cmd line trainer args (which are in trainer_opt) have always priority over config-trainer-args (which are in trainer_kwargs)
|
|
trainer_opt = vars(trainer_opt)
|
|
trainer_kwargs = {
|
|
key: val for key, val in trainer_kwargs.items() if key not in trainer_opt
|
|
}
|
|
trainer = Trainer(**trainer_opt, **trainer_kwargs)
|
|
|
|
trainer.logdir = logdir ###
|
|
|
|
# data
|
|
data = instantiate_from_config(config.data)
|
|
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
|
# calling these ourselves should not be necessary but it is.
|
|
# lightning still takes care of proper multiprocessing though
|
|
data.prepare_data()
|
|
# data.setup()
|
|
print("#### Data #####")
|
|
try:
|
|
for k in data.datasets:
|
|
print(
|
|
f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
|
|
)
|
|
except:
|
|
print("datasets not yet initialized.")
|
|
|
|
# configure learning rate
|
|
if "batch_size" in config.data.params:
|
|
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
|
else:
|
|
bs, base_lr = (
|
|
config.data.params.train.loader.batch_size,
|
|
config.model.base_learning_rate,
|
|
)
|
|
if not cpu:
|
|
ngpu = len(lightning_config.trainer.devices.strip(",").split(","))
|
|
else:
|
|
ngpu = 1
|
|
if "accumulate_grad_batches" in lightning_config.trainer:
|
|
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
|
|
else:
|
|
accumulate_grad_batches = 1
|
|
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
|
|
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
|
|
if opt.scale_lr:
|
|
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
|
|
print(
|
|
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
|
|
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr
|
|
)
|
|
)
|
|
else:
|
|
model.learning_rate = base_lr
|
|
print("++++ NOT USING LR SCALING ++++")
|
|
print(f"Setting learning rate to {model.learning_rate:.2e}")
|
|
|
|
# allow checkpointing via USR1
|
|
def melk(*args, **kwargs):
|
|
# run all checkpoint hooks
|
|
if trainer.global_rank == 0:
|
|
print("Summoning checkpoint.")
|
|
if melk_ckpt_name is None:
|
|
ckpt_path = os.path.join(ckptdir, "last.ckpt")
|
|
else:
|
|
ckpt_path = os.path.join(ckptdir, melk_ckpt_name)
|
|
trainer.save_checkpoint(ckpt_path)
|
|
|
|
def divein(*args, **kwargs):
|
|
if trainer.global_rank == 0:
|
|
import pudb
|
|
|
|
pudb.set_trace()
|
|
|
|
import signal
|
|
|
|
signal.signal(signal.SIGUSR1, melk)
|
|
signal.signal(signal.SIGUSR2, divein)
|
|
|
|
# run
|
|
if opt.train:
|
|
try:
|
|
trainer.fit(model, data, ckpt_path=ckpt_resume_path)
|
|
except Exception:
|
|
if not opt.debug:
|
|
melk()
|
|
raise
|
|
if not opt.no_test and not trainer.interrupted:
|
|
trainer.test(model, data)
|
|
except RuntimeError as err:
|
|
if MULTINODE_HACKS:
|
|
import datetime
|
|
import os
|
|
import socket
|
|
|
|
import requests
|
|
|
|
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
|
|
hostname = socket.gethostname()
|
|
ts = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
|
|
resp = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
|
|
print(
|
|
f"ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}",
|
|
flush=True,
|
|
)
|
|
raise err
|
|
except Exception:
|
|
if opt.debug and trainer.global_rank == 0:
|
|
try:
|
|
import pudb as debugger
|
|
except ImportError:
|
|
import pdb as debugger
|
|
debugger.post_mortem()
|
|
raise
|
|
finally:
|
|
# move newly created debug project to debug_runs
|
|
if opt.debug and not opt.resume and trainer.global_rank == 0:
|
|
dst, name = os.path.split(logdir)
|
|
dst = os.path.join(dst, "debug_runs", name)
|
|
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
|
os.rename(logdir, dst)
|
|
|
|
if opt.wandb:
|
|
wandb.finish()
|
|
# if trainer.global_rank == 0:
|
|
# print(trainer.profiler.summary())
|