2 Commits
sp4d ... main

Author SHA1 Message Date
Mark Boss
e8cd657656 Merge pull request #467 from Stability-AI/deprecate
Deprecate SD2
2025-12-16 09:36:15 +01:00
Vikram Voleti
0a4ea360db Deprecate SD2 2025-12-16 08:19:01 +00:00
14 changed files with 4 additions and 993 deletions

View File

@@ -5,18 +5,6 @@
## News ## News
**Nov 4, 2025**
- We are releasing **[Stable Part Diffusion 4D (SP4D)](https://huggingface.co/stabilityai/sp4d)**, a video-to-4D diffusion model for multi-view part video synthesis and animatable 3D asset generation. For research purposes:
- **SP4D** was trained to generate 48 RGB frames and part segmentation maps (4 video frames x 12 camera views) at 576x576 resolution, given a 4-frame input video of the same size, ideally consisting of white-background images of a moving object.
- Based on our previous 4D model [SV4D 2.0](https://huggingface.co/stabilityai/sv4d2.0), **SP4D** can simultaneously generate multi-view RGB videos as well as the corresponding kinematic part segmentations that are consistent across time and camera views.
- The generated part videos can then be used to create animation-ready 3D assets with part-aware rigging capabilities.
- Please check our [project page](https://stablepartdiffusion4d.github.io/), [arxiv paper](https://arxiv.org/pdf/2509.10687) and [video summary](https://www.youtube.com/watch?v=FXEFeh8tf0k) for more details.
**QUICKSTART** :
- Setup environment following the SV4D instructions and download [sp4d.safetensors](https://huggingface.co/stabilityai/sp4d) from HuggingFace into `checkpoints/`
- Run `python scripts/sampling/simple_video_sample_sp4d.py --input_path assets/sv4d_videos/cows.gif --output_folder outputs` to generate multi-view part videos given the sample input.
**May 20, 2025** **May 20, 2025**
- We are releasing **[Stable Video 4D 2.0 (SV4D 2.0)](https://huggingface.co/stabilityai/sv4d2.0)**, an enhanced video-to-4D diffusion model for high-fidelity novel-view video synthesis and 4D asset generation. For research purposes: - We are releasing **[Stable Video 4D 2.0 (SV4D 2.0)](https://huggingface.co/stabilityai/sv4d2.0)**, an enhanced video-to-4D diffusion model for high-fidelity novel-view video synthesis and 4D asset generation. For research purposes:
- **SV4D 2.0** was trained to generate 48 frames (12 video frames x 4 camera views) at 576x576 resolution, given a 12-frame input video of the same size, ideally consisting of white-background images of a moving object. - **SV4D 2.0** was trained to generate 48 frames (12 video frames x 4 camera views) at 576x576 resolution, given a 12-frame input video of the same size, ideally consisting of white-background images of a moving object.
@@ -105,9 +93,6 @@ To run SVD or SV3D on a streamlit server:
![tile](assets/sv3d.gif) ![tile](assets/sv3d.gif)
**November 30, 2023**
- Following the launch of SDXL-Turbo, we are releasing [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo).
**November 28, 2023** **November 28, 2023**
- We are releasing SDXL-Turbo, a lightning fast text-to image model. - We are releasing SDXL-Turbo, a lightning fast text-to image model.
Alongside the model, we release a [technical report](https://stability.ai/research/adversarial-diffusion-distillation) Alongside the model, we release a [technical report](https://stability.ai/research/adversarial-diffusion-distillation)
@@ -269,8 +254,6 @@ The following models are currently supported:
``` ```
- [SDXL-base-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9) - [SDXL-base-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9)
- [SDXL-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9) - [SDXL-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9)
- [SD-2.1-512](https://huggingface.co/stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned.safetensors)
- [SD-2.1-768](https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors)
**Weights for SDXL**: **Weights for SDXL**:

View File

@@ -1,60 +0,0 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.18215
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2, 1]
num_res_blocks: 2
channel_mult: [1, 2, 4, 4]
num_head_channels: 64
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: true
layer: penultimate
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

View File

@@ -1,60 +0,0 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.18215
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2, 1]
num_res_blocks: 2
channel_mult: [1, 2, 4, 4]
num_head_channels: 64
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: true
layer: penultimate
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

View File

@@ -1,58 +0,0 @@
STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE AGREEMENT
Dated: November 28, 2023
By using or distributing any portion or element of the Models, Software, Software Products or Derivative Works, you agree to be bound by this Agreement.
"Agreement" means this Stable Non-Commercial Research Community License Agreement.
“AUP” means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may be updated from time to time.
"Derivative Work(s)” means (a) any derivative work of the Software Products as recognized by U.S. copyright laws and (b) any modifications to a Model, and any other model created which is based on or derived from the Model or the Models output. For clarity, Derivative Works do not include the output of any Model.
“Documentation” means any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software.
"Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
“Model(s)" means, collectively, Stability AIs proprietary models and algorithms, including machine-learning models, trained model weights and other elements of the foregoing, made available under this Agreement.
“Non-Commercial Uses” means exercising any of the rights granted herein for the purpose of research or non-commercial purposes. Non-Commercial Uses does not include any production use of the Software Products or any Derivative Works.
"Stability AI" or "we" means Stability AI Ltd. and its affiliates.
"Software" means Stability AIs proprietary software made available under this Agreement.
“Software Products” means the Models, Software and Documentation, individually or in any combination.
1. License Rights and Redistribution.
a. Subject to your compliance with this Agreement, the AUP (which is hereby incorporated herein by reference), and the Documentation, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AIs intellectual property or other rights owned or controlled by Stability AI embodied in the Software Products to reproduce the Software Products and produce, reproduce, distribute, and create Derivative Works of the Software Products for Non-Commercial Uses only, respectively.
b. You may not use the Software Products or Derivative Works to enable third parties to use the Software Products or Derivative Works as part of your hosted service or via your APIs, whether you are adding substantial additional functionality thereto or not. Merely distributing the Software Products or Derivative Works for download online without offering any related service (ex. by distributing the Models on HuggingFace) is not a violation of this subsection. If you wish to use the Software Products or any Derivative Works for commercial or production use or you wish to make the Software Products or any Derivative Works available to third parties via your hosted service or your APIs, contact Stability AI at https://stability.ai/contact.
c. If you distribute or make the Software Products, or any Derivative Works thereof, available to a third party, the Software Products, Derivative Works, or any portion thereof, respectively, will remain subject to this Agreement and you must (i) provide a copy of this Agreement to such third party, and (ii) retain the following attribution notice within a "Notice" text file distributed as a part of such copies: "This Stability AI Model is licensed under the Stability AI Non-Commercial Research Community License, Copyright (c) Stability AI Ltd. All Rights Reserved.” If you create a Derivative Work of a Software Product, you may add your own attribution notices to the Notice file included with the Software Product, provided that you clearly indicate which attributions apply to the Software Product and you must state in the NOTICE file that you changed the Software Product and how it was modified.
2. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE SOFTWARE PRODUCTS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE SOFTWARE PRODUCTS, DERIVATIVE WORKS OR ANY OUTPUT OR RESULTS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE SOFTWARE PRODUCTS, DERIVATIVE WORKS AND ANY OUTPUT AND RESULTS.
3. Limitation of Liability. IN NO EVENT WILL STABILITY AI OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF STABILITY AI OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
4. Intellectual Property.
a. No trademark licenses are granted under this Agreement, and in connection with the Software Products or Derivative Works, neither Stability AI nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Software Products or Derivative Works.
b. Subject to Stability AIs ownership of the Software Products and Derivative Works made by or for Stability AI, with respect to any Derivative Works that are made by you, as between you and Stability AI, you are and will be the owner of such Derivative Works
c. If you institute litigation or other proceedings against Stability AI (including a cross-claim or counterclaim in a lawsuit) alleging that the Software Products, Derivative Works or associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out of or related to your use or distribution of the Software Products or Derivative Works in violation of this Agreement.
5. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Software Products and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Stability AI may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of any Software Products or Derivative Works. Sections 2-4 shall survive the termination of this Agreement.

View File

@@ -52,24 +52,6 @@ VERSION2SPECS = {
"config": "configs/inference/sd_xl_base.yaml", "config": "configs/inference/sd_xl_base.yaml",
"ckpt": "checkpoints/sd_xl_base_0.9.safetensors", "ckpt": "checkpoints/sd_xl_base_0.9.safetensors",
}, },
"SD-2.1": {
"H": 512,
"W": 512,
"C": 4,
"f": 8,
"is_legacy": True,
"config": "configs/inference/sd_2_1.yaml",
"ckpt": "checkpoints/v2-1_512-ema-pruned.safetensors",
},
"SD-2.1-768": {
"H": 768,
"W": 768,
"C": 4,
"f": 8,
"is_legacy": True,
"config": "configs/inference/sd_2_1_768.yaml",
"ckpt": "checkpoints/v2-1_768-ema-pruned.safetensors",
},
"SDXL-refiner-0.9": { "SDXL-refiner-0.9": {
"H": 1024, "H": 1024,
"W": 1024, "W": 1024,

View File

@@ -724,7 +724,6 @@ def run_img2vid(
cond_view=None, cond_view=None,
decoding_t=None, decoding_t=None,
cond_mv=True, cond_mv=True,
part_maps=False,
): ):
options = version_dict["options"] options = version_dict["options"]
H = version_dict["H"] H = version_dict["H"]
@@ -793,7 +792,6 @@ def run_img2vid(
force_cond_zero_embeddings=options.get("force_cond_zero_embeddings", None), force_cond_zero_embeddings=options.get("force_cond_zero_embeddings", None),
return_latents=False, return_latents=False,
decoding_t=decoding_t, decoding_t=decoding_t,
part_maps=part_maps,
) )
return samples return samples
@@ -923,7 +921,6 @@ def do_sample(
T=None, T=None,
additional_batch_uc_fields=None, additional_batch_uc_fields=None,
decoding_t=None, decoding_t=None,
part_maps=False,
): ):
force_uc_zero_embeddings = default(force_uc_zero_embeddings, []) force_uc_zero_embeddings = default(force_uc_zero_embeddings, [])
batch2model_input = default(batch2model_input, []) batch2model_input = default(batch2model_input, [])
@@ -992,9 +989,6 @@ def do_sample(
else: else:
additional_model_inputs[k] = batch[k] additional_model_inputs[k] = batch[k]
if part_maps:
shape = (math.prod(num_samples), C * 2, H // F, W // F)
else:
shape = (math.prod(num_samples), C, H // F, W // F) shape = (math.prod(num_samples), C, H // F, W // F)
randn = torch.randn(shape).to("cuda") randn = torch.randn(shape).to("cuda")

View File

@@ -13,15 +13,6 @@ VERSION2SPECS = {
"config": "configs/inference/sd_xl_base.yaml", "config": "configs/inference/sd_xl_base.yaml",
"ckpt": "checkpoints/sd_xl_turbo_1.0.safetensors", "ckpt": "checkpoints/sd_xl_turbo_1.0.safetensors",
}, },
"SD-Turbo": {
"H": 512,
"W": 512,
"C": 4,
"f": 8,
"is_legacy": False,
"config": "configs/inference/sd_2_1.yaml",
"ckpt": "checkpoints/sd_turbo.safetensors",
},
} }

View File

@@ -1,210 +0,0 @@
N_TIME: 4
N_VIEW: 12
N_FRAMES: 48
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.18215
en_and_decode_n_samples_a_time: 8
disable_first_stage_autocast: True
ckpt_path: checkpoints/sp4d.safetensors
dual_concat: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.Denoiser
params:
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
network_config:
target: sgm.modules.diffusionmodules.video_model.DualSpatialUNetWithCrossComm
params:
unet_config:
adm_in_channels: 1280
attention_resolutions: [4, 2, 1]
channel_mult: [1, 2, 4, 4]
context_dim: 1024
motion_context_dim: 4
extra_ff_mix_layer: True
in_channels: 8
legacy: False
model_channels: 320
num_classes: sequential
num_head_channels: 64
num_res_blocks: 2
out_channels: 4
replicate_time_mix_bug: True
spatial_transformer_attn_type: softmax-xformers
time_block_merge_factor: 0.0
time_block_merge_strategy: learned_with_images
time_kernel_size: [3, 1, 1]
time_mix_legacy: False
transformer_depth: 1
use_checkpoint: False
use_linear_in_transformer: True
use_spatial_context: True
use_spatial_transformer: True
separate_motion_merge_factor: True
use_motion_attention: True
use_3d_attention: True
use_camera_emb: True
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- input_key: cond_frames_without_noise
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
is_trainable: False
params:
n_cond_frames: ${N_TIME}
n_copies: 1
open_clip_embedding_config:
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
params:
freeze: True
- input_key: cond_frames
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
is_trainable: False
params:
is_ae: True
n_cond_frames: ${N_FRAMES}
n_copies: 1
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
ddconfig:
attn_resolutions: []
attn_type: vanilla-xformers
ch: 128
ch_mult: [1, 2, 4, 4]
double_z: True
dropout: 0.0
in_channels: 3
num_res_blocks: 2
out_ch: 3
resolution: 256
z_channels: 4
embed_dim: 4
lossconfig:
target: torch.nn.Identity
monitor: val/rec_loss
sigma_cond_config:
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
- input_key: polar_rad
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 512
- input_key: azimuth_rad
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 512
- input_key: cond_view
is_trainable: False
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
params:
is_ae: True
n_cond_frames: ${N_VIEW}
n_copies: 1
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_resolutions: []
attn_type: vanilla-xformers
ch: 128
ch_mult: [1, 2, 4, 4]
double_z: True
dropout: 0.0
in_channels: 3
num_res_blocks: 2
out_ch: 3
resolution: 256
z_channels: 4
lossconfig:
target: torch.nn.Identity
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
- input_key: cond_motion
is_trainable: False
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
params:
is_ae: True
n_cond_frames: ${N_TIME}
n_copies: 1
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_resolutions: []
attn_type: vanilla-xformers
ch: 128
ch_mult: [1, 2, 4, 4]
double_z: True
dropout: 0.0
in_channels: 3
num_res_blocks: 2
out_ch: 3
resolution: 256
z_channels: 4
lossconfig:
target: torch.nn.Identity
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
first_stage_config:
target: sgm.models.autoencoder.AutoencodingEngine
params:
loss_config:
target: torch.nn.Identity
regularizer_config:
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: torch.nn.Identity
decoder_config:
target: sgm.modules.diffusionmodules.model.DecoderDual
params:
attn_resolutions: []
attn_type: vanilla-xformers
ch: 128
ch_mult: [1, 2, 4, 4]
double_z: True
dropout: 0.0
in_channels: 3
num_res_blocks: 2
out_ch: 3
resolution: 256
z_channels: 4
sampler_config:
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
params:
num_steps: 50
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
params:
sigma_max: 500.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.SpatiotemporalPredictionGuider
params:
max_scale: 1.5
min_scale: 1.5
num_frames: ${N_FRAMES}
num_views: ${N_VIEW}
additional_cond_keys: [ cond_view, cond_motion ]

View File

@@ -1,198 +0,0 @@
import os
import sys
from glob import glob
from typing import List, Optional
from tqdm import tqdm
sys.path.append(os.path.realpath(os.path.join(os.path.dirname(__file__), "../../")))
import numpy as np
import torch
from fire import Fire
from scripts.demo.sv4d_helpers import (
load_model,
preprocess_video,
read_video,
run_img2vid,
save_video,
)
from sgm.modules.encoders.modules import VideoPredictionEmbedderWithEncoder
sp4d_configs = {
"sp4d": {
"T": 4, # number of frames per sample
"V": 12, # number of views per sample
"model_config": "scripts/sampling/configs/sp4d.yaml",
"version_dict": {
"T": 48,
"options": {
"discretization": 1,
"cfg": 3.0,
"min_cfg": 1.5,
"num_views": 12,
"sigma_min": 0.002,
"sigma_max": 700.0,
"rho": 7.0,
"guider": 2,
"force_uc_zero_embeddings": [
"cond_frames",
"cond_frames_without_noise",
"cond_view",
"cond_motion",
],
"additional_guider_kwargs": {
"additional_cond_keys": ["cond_view", "cond_motion"]
},
},
},
},
}
def sample(
input_path: str = "assets/sv4d_videos/camel.gif", # Can either be image file or folder with image files
model_path: Optional[str] = "checkpoints/sp4d.safetensors",
output_folder: Optional[str] = "outputs",
num_steps: Optional[int] = 50,
img_size: int = 512, # image resolution
n_frames: int = 4, # number of input and output video frames
seed: int = 23,
encoding_t: int = 8, # Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
elevations_deg: Optional[List[float]] = 0.0,
azimuths_deg: Optional[List[float]] = None,
image_frame_ratio: Optional[float] = 0.9,
verbose: Optional[bool] = False,
remove_bg: bool = False,
):
"""
Simple script to generate multiple novel-view videos conditioned on a video `input_path` or multiple frames, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t` and `encoding_t`.
"""
# Set model config
assert os.path.basename(model_path) in [
"sp4d.safetensors",
]
sp4d_model = os.path.splitext(os.path.basename(model_path))[0]
config = sp4d_configs[sp4d_model]
print(sp4d_model, config)
T = config["T"]
V = config["V"]
model_config = config["model_config"]
version_dict = config["version_dict"]
F = 8 # vae factor to downsize image->latent
C = 4
H, W = img_size, img_size
n_views = V + 1 # number of output video views (1 input view + 8 novel views)
subsampled_views = np.arange(n_views)
version_dict["H"] = H
version_dict["W"] = W
version_dict["C"] = C
version_dict["f"] = F
version_dict["options"]["num_steps"] = num_steps
torch.manual_seed(seed)
output_folder = os.path.join(output_folder, sp4d_model)
os.makedirs(output_folder, exist_ok=True)
# Read input video frames i.e. images at view 0
print(f"Reading {input_path}")
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // (n_frames + 1)
processed_input_path = preprocess_video(
input_path,
remove_bg=remove_bg,
n_frames=n_frames,
W=W,
H=H,
output_folder=output_folder,
image_frame_ratio=image_frame_ratio,
base_count=base_count,
)
images_v0 = read_video(processed_input_path, n_frames=n_frames, device=device)
images_t0 = torch.zeros(n_views, 3, H, W).float().to(device)
# Get camera viewpoints
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
elevations_deg = [elevations_deg] * n_views
assert (
len(elevations_deg) == n_views
), f"Please provide 1 value, or a list of {n_views} values for elevations_deg! Given {len(elevations_deg)}"
if azimuths_deg is None:
azimuths_deg = np.linspace(0, 360, n_views + 1)[1:] % 360
assert (
len(azimuths_deg) == n_views
), f"Please provide a list of {n_views} values for azimuths_deg! Given {len(azimuths_deg)}"
polars_rad = np.array([np.deg2rad(90 - e) for e in elevations_deg])
azimuths_rad = np.array(
[np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg]
)
# Initialize image matrix
img_matrix = [[None] * n_views for _ in range(n_frames)]
for i, v in enumerate(subsampled_views):
img_matrix[0][i] = images_t0[v].unsqueeze(0)
for t in range(n_frames):
img_matrix[t][0] = images_v0[t]
# Load SV4D++ model
model, _ = load_model(
model_config,
device,
version_dict["T"],
num_steps,
verbose,
model_path,
)
model.en_and_decode_n_samples_a_time = decoding_t
for emb in model.conditioner.embedders:
if isinstance(emb, VideoPredictionEmbedderWithEncoder):
emb.en_and_decode_n_samples_a_time = encoding_t
# Sampling novel-view videos
v0 = 0
view_indices = np.arange(V) + 1
t0_list = range(0, n_frames - T + 1, T - 1)
for t0 in tqdm(t0_list):
if t0 + T > n_frames:
t0 = n_frames - T
frame_indices = t0 + np.arange(T)
print(f"Sampling frames {frame_indices}")
image = img_matrix[t0][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in frame_indices], 0)
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
polars = (polars - polars_rad[v0] + torch.pi / 2) % (torch.pi * 2)
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
samples = run_img2vid(
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
decoding_t,
cond_mv=False,
part_maps=True,
)
samples = samples.view(T, V, 3, H, -1)
for i, t in enumerate(frame_indices):
for j, v in enumerate(view_indices):
img_matrix[t][v] = samples[i, j][None] * 2 - 1
# Save output videos
for t in frame_indices:
vid_file = os.path.join(output_folder, f"{base_count:06d}_{t:03d}.mp4")
print(f"Saving {vid_file}")
save_video(
vid_file,
[img_matrix[t][v] for v in range(1, n_views) if img_matrix[t][v] is not None],
)
if __name__ == "__main__":
Fire(sample)

View File

@@ -17,8 +17,6 @@ from sgm.util import load_model_from_config
class ModelArchitecture(str, Enum): class ModelArchitecture(str, Enum):
SD_2_1 = "stable-diffusion-v2-1"
SD_2_1_768 = "stable-diffusion-v2-1-768"
SDXL_V0_9_BASE = "stable-diffusion-xl-v0-9-base" SDXL_V0_9_BASE = "stable-diffusion-xl-v0-9-base"
SDXL_V0_9_REFINER = "stable-diffusion-xl-v0-9-refiner" SDXL_V0_9_REFINER = "stable-diffusion-xl-v0-9-refiner"
SDXL_V1_BASE = "stable-diffusion-xl-v1-base" SDXL_V1_BASE = "stable-diffusion-xl-v1-base"
@@ -89,26 +87,6 @@ class SamplingSpec:
model_specs = { model_specs = {
ModelArchitecture.SD_2_1: SamplingSpec(
height=512,
width=512,
channels=4,
factor=8,
is_legacy=True,
config="sd_2_1.yaml",
ckpt="v2-1_512-ema-pruned.safetensors",
is_guided=True,
),
ModelArchitecture.SD_2_1_768: SamplingSpec(
height=768,
width=768,
channels=4,
factor=8,
is_legacy=True,
config="sd_2_1_768.yaml",
ckpt="v2-1_768-ema-pruned.safetensors",
is_guided=True,
),
ModelArchitecture.SDXL_V0_9_BASE: SamplingSpec( ModelArchitecture.SDXL_V0_9_BASE: SamplingSpec(
height=1024, height=1024,
width=1024, width=1024,

View File

@@ -38,7 +38,6 @@ class DiffusionEngine(pl.LightningModule):
no_cond_log: bool = False, no_cond_log: bool = False,
compile_model: bool = False, compile_model: bool = False,
en_and_decode_n_samples_a_time: Optional[int] = None, en_and_decode_n_samples_a_time: Optional[int] = None,
dual_concat: bool = False,
): ):
super().__init__() super().__init__()
self.log_keys = log_keys self.log_keys = log_keys
@@ -48,7 +47,7 @@ class DiffusionEngine(pl.LightningModule):
) )
model = instantiate_from_config(network_config) model = instantiate_from_config(network_config)
self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))( self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))(
model, compile_model=compile_model, dual_concat=dual_concat model, compile_model=compile_model
) )
self.denoiser = instantiate_from_config(denoiser_config) self.denoiser = instantiate_from_config(denoiser_config)

View File

@@ -746,170 +746,3 @@ class Decoder(nn.Module):
if self.tanh_out: if self.tanh_out:
h = torch.tanh(h) h = torch.tanh(h)
return h return h
class DecoderDual(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
give_pre_end=False,
tanh_out=False,
use_linear_attn=False,
attn_type="vanilla",
**ignorekwargs,
):
super().__init__()
if use_linear_attn:
attn_type = "linear"
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,) + tuple(ch_mult)
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
logpy.info(
"Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)
)
)
make_attn_cls = self._make_attn()
make_resblock_cls = self._make_resblock()
make_conv_cls = self._make_conv()
# z to block_in (处理单个 latent)
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.Module()
self.mid.block_1 = make_resblock_cls(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type)
self.mid.block_2 = make_resblock_cls(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
make_resblock_cls(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn_cls(block_in, attn_type=attn_type))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = make_conv_cls(
block_in, out_ch, kernel_size=3, stride=1, padding=1
)
def _make_attn(self) -> Callable:
return make_attn
def _make_resblock(self) -> Callable:
return ResnetBlock
def _make_conv(self) -> Callable:
return torch.nn.Conv2d
def get_last_layer(self, **kwargs):
return self.conv_out.weight
def forward(self, z, **kwargs):
"""
输入 z 的形状应为 (B, 2 * z_channels, H, W)
- 其中前一半通道为第一个 latent后一半通道为第二个 latent
- 分离后分别解码,最终在 W 维度拼接
"""
# 断言检查,确保输入的通道数是 2 倍的 z_channels
assert (
z.shape[1] == 2 * self.z_shape[1]
), f"Expected {2 * self.z_shape[1]} channels, got {z.shape[1]}"
# 分割 latent 为两个部分
z1, z2 = torch.chunk(z, 2, dim=1) # 按照通道维度 (C) 切分
# 分别解码
img1 = self.decode_single(z1, **kwargs)
img2 = self.decode_single(z2, **kwargs)
# 沿着 W 维度拼接
output = torch.cat([img1, img2], dim=-1) # 在 width 维度拼接
return output
def decode_single(self, z, **kwargs):
"""解码单个 latent 到一张图像"""
self.last_z_shape = z.shape
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, None, **kwargs)
h = self.mid.attn_1(h, **kwargs)
h = self.mid.block_2(h, None, **kwargs)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, None, **kwargs)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, **kwargs)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h, **kwargs)
if self.tanh_out:
h = torch.tanh(h)
return h

View File

@@ -13,7 +13,6 @@ from ...modules.spacetime_attention import (
from ...util import default from ...util import default
from .util import AlphaBlender, get_alpha from .util import AlphaBlender, get_alpha
import torch
class VideoResBlock(ResBlock): class VideoResBlock(ResBlock):
def __init__( def __init__(
@@ -1253,157 +1252,3 @@ class SpatialUNetModelWithTime(nn.Module):
) )
h = h.type(x.dtype) h = h.type(x.dtype)
return self.out(h) return self.out(h)
class CrossNetworkLayer(nn.Module):
def __init__(self, feature_dim: int):
super().__init__()
self.fusion_conv = nn.Sequential(
nn.Conv2d(feature_dim * 2, feature_dim, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(feature_dim, feature_dim, kernel_size=1),
)
def forward(self, h1: torch.Tensor, h2: torch.Tensor):
"""
h1, h2: (B, C, H, W)
return: (out1, out2), (B, C, H, W)
"""
fused_input = torch.cat([h1, h2], dim=1) # (B, 2C, H, W)
fused_output = self.fusion_conv(fused_input) # (B, C, H, W)
out1 = fused_output + h1
out2 = fused_output + h2
return out1, out2
class DualSpatialUNetWithCrossComm(nn.Module):
def __init__(self, unet_config):
super().__init__()
self.num_classes = unet_config["num_classes"]
self.model_channels = unet_config["model_channels"]
self.net1 = SpatialUNetModelWithTime(**unet_config)
self.net2 = SpatialUNetModelWithTime(**unet_config)
self.input_cross_layers = nn.ModuleList()
for block in self.net1.input_blocks:
out_ch = self._get_block_out_channels(block)
self.input_cross_layers.append(CrossNetworkLayer(feature_dim=out_ch))
middle_out_ch = self._get_block_out_channels(self.net1.middle_block)
self.middle_cross = CrossNetworkLayer(feature_dim=middle_out_ch)
self.output_cross_layers = nn.ModuleList()
for block in self.net1.output_blocks:
out_ch = self._get_block_out_channels(block)
self.output_cross_layers.append(CrossNetworkLayer(feature_dim=out_ch))
def _get_block_out_channels(self, block: nn.Module) -> int:
mod_list = list(block.children())
for m in reversed(mod_list):
if hasattr(m, "out_channels"):
return m.out_channels
if isinstance(
m,
(SpatialTransformer, PostHocSpatialTransformerWithTimeMixingAndMotion),
):
return m.in_channels
if isinstance(m, nn.Conv2d):
return m.out_channels
raise ValueError(f"Cannot determine out_channels from block: {block}")
def forward(
self,
x: th.Tensor,
timesteps: th.Tensor,
context: Optional[th.Tensor] = None,
y: Optional[th.Tensor] = None,
cam: Optional[th.Tensor] = None,
time_context: Optional[th.Tensor] = None,
num_video_frames: Optional[int] = None,
image_only_indicator: Optional[th.Tensor] = None,
cond_view: Optional[th.Tensor] = None,
cond_motion: Optional[th.Tensor] = None,
time_step: Optional[int] = None,
):
# ============ encoder ============
h1, h2 = x[:, : x.shape[1] // 2], x[:, x.shape[1] // 2 :]
encoder_feats1 = []
encoder_feats2 = []
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional -> no, relax this TODO"
t_emb = timestep_embedding(
timesteps, self.model_channels, repeat_only=False
) # 21 x 320
emb = self.net1.time_embed(t_emb) # 21 x 1280
time = str(timesteps[0].data.cpu().numpy())
if self.num_classes is not None:
assert y.shape[0] == h1.shape[0]
emb = emb + self.net1.label_emb(y) # 21 x 1280
filtered_args = {
"emb": emb,
"context": context,
"cam": cam,
"cond_view": cond_view,
"cond_motion": cond_motion,
"time_context": time_context,
"num_video_frames": num_video_frames,
"image_only_indicator": image_only_indicator,
"time_step": time_step,
}
for i, (block1, block2) in enumerate(
zip(self.net1.input_blocks, self.net2.input_blocks)
):
h1 = block1(h1, name="encoder_{}_{}".format(time, i), **filtered_args)
h2 = block2(h2, name="encoder_{}_{}".format(time, i), **filtered_args)
# cross
h1, h2 = self.input_cross_layers[i](h1, h2)
encoder_feats1.append(h1)
encoder_feats2.append(h2)
# ============ middle block ============
h1 = self.net1.middle_block(
h1, name="middle_{}_0".format(time, i), **filtered_args
)
h2 = self.net2.middle_block(
h2, name="middle_{}_0".format(time, i), **filtered_args
)
# cross
h1, h2 = self.middle_cross(h1, h2)
# ============ decoder ============
for i, (block1, block2) in enumerate(
zip(self.net1.output_blocks, self.net2.output_blocks)
):
skip1 = encoder_feats1.pop()
skip2 = encoder_feats2.pop()
h1 = torch.cat([h1, skip1], dim=1)
h2 = torch.cat([h2, skip2], dim=1)
h1 = block1(h1, name="decoder_{}_{}".format(time, i), **filtered_args)
h2 = block2(h2, name="decoder_{}_{}".format(time, i), **filtered_args)
# cross
h1, h2 = self.output_cross_layers[i](h1, h2)
# ============ output ============
out1 = self.net1.out(h1) # shape: (B, out_channels, H, W)
out2 = self.net2.out(h2) # same shape
out = torch.cat([out1, out2], dim=1)
return out

View File

@@ -6,7 +6,7 @@ OPENAIUNETWRAPPER = "sgm.modules.diffusionmodules.wrappers.OpenAIWrapper"
class IdentityWrapper(nn.Module): class IdentityWrapper(nn.Module):
def __init__(self, diffusion_model, compile_model: bool = False, dual_concat: bool = False): def __init__(self, diffusion_model, compile_model: bool = False):
super().__init__() super().__init__()
compile = ( compile = (
torch.compile torch.compile
@@ -15,7 +15,6 @@ class IdentityWrapper(nn.Module):
else lambda x: x else lambda x: x
) )
self.diffusion_model = compile(diffusion_model) self.diffusion_model = compile(diffusion_model)
self.dual_concat = dual_concat
def forward(self, *args, **kwargs): def forward(self, *args, **kwargs):
return self.diffusion_model(*args, **kwargs) return self.diffusion_model(*args, **kwargs)
@@ -25,13 +24,6 @@ class OpenAIWrapper(IdentityWrapper):
def forward( def forward(
self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs
) -> torch.Tensor: ) -> torch.Tensor:
if self.dual_concat:
x_1 = x[:, : x.shape[1] // 2]
x_2 = x[:, x.shape[1] // 2 :]
x_1 = torch.cat((x_1, c.get("concat", torch.Tensor([]).type_as(x_1))), dim=1)
x_2 = torch.cat((x_2, c.get("concat", torch.Tensor([]).type_as(x_2))), dim=1)
x = torch.cat((x_1, x_2), dim=1)
else:
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1) x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1)
if "cond_view" in c: if "cond_view" in c:
return self.diffusion_model( return self.diffusion_model(