Changed LegacyDDPMDiscretization for sampling

This commit is contained in:
Tim
2023-06-29 15:47:37 -07:00
parent 613af104c6
commit e9869d7822
2 changed files with 24 additions and 15 deletions

View File

@@ -325,10 +325,8 @@ def init_sampling(
def get_discretization(discretization, key=1):
if discretization == "LegacyDDPMDiscretization":
use_new_range = st.checkbox(f"Start from highest noise level? #{key}", False)
discretization_config = {
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
"params": {"legacy_range": not use_new_range},
}
elif discretization == "EDMDiscretization":
sigma_min = st.number_input(f"sigma_min #{key}", value=0.03) # 0.0292

View File

@@ -6,6 +6,26 @@ from ...util import append_zero
from ...modules.diffusionmodules.util import make_beta_schedule
def generate_roughly_equally_spaced_steps(n, m):
# 0, ..., m - 1
m -= 1
# We are getting rid of leading 0 later, so increase steps
n += 1
# Calculate the step size
step = m / (n - 1)
# Generate the list
steps_reversed = [int(m - i * step) for i in range(n)]
steps = steps_reversed[::-1]
# Get rid of leading 0
steps = steps[1:]
return np.array(steps)
class Discretization:
def __call__(self, n, do_append_zero=True, device="cuda", flip=False):
sigmas = self.get_sigmas(n, device)
@@ -33,7 +53,6 @@ class LegacyDDPMDiscretization(Discretization):
linear_start=0.00085,
linear_end=0.0120,
num_timesteps=1000,
legacy_range=True,
):
self.num_timesteps = num_timesteps
betas = make_beta_schedule(
@@ -42,23 +61,15 @@ class LegacyDDPMDiscretization(Discretization):
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.to_torch = partial(torch.tensor, dtype=torch.float32)
self.legacy_range = legacy_range
def get_sigmas(self, n, device):
if n < self.num_timesteps:
c = self.num_timesteps // n
if self.legacy_range:
timesteps = np.asarray(list(range(0, self.num_timesteps, c)))
timesteps += 1 # Legacy LDM Hack
else:
timesteps = np.asarray(list(range(0, self.num_timesteps + 1, c)))
timesteps -= 1
timesteps = timesteps[1:]
timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps)
alphas_cumprod = self.alphas_cumprod[timesteps]
else:
elif n == self.num_timesteps:
alphas_cumprod = self.alphas_cumprod
else:
raise ValueError
to_torch = partial(torch.tensor, dtype=torch.float32, device=device)
sigmas = to_torch((1 - alphas_cumprod) / alphas_cumprod) ** 0.5