sv4d: fix readme;

rename video exampel folder;
add encode_t as input parameter.
This commit is contained in:
ymxie97
2024-08-02 17:19:03 +00:00
parent da40ebad4e
commit e90e953330
22 changed files with 43 additions and 29 deletions

View File

@@ -14,6 +14,7 @@ from huggingface_hub import hf_hub_download
from typing import List, Optional, Union
import torchvision
from sgm.modules.encoders.modules import VideoPredictionEmbedderWithEncoder
from scripts.demo.sv4d_helpers import (
decode_latents,
load_model,
@@ -138,6 +139,7 @@ sv3d_model = initial_model_load(sv3d_model)
def sample_anchor(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
seed: Optional[int] = None,
encoding_t: int = 8, # Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
num_steps: int = 20,
sv3d_version: str = "sv3d_u", # sv3d_u or sv3d_p
@@ -205,6 +207,10 @@ def sample_anchor(
sv3d_file = os.path.join(output_folder, "t000.mp4")
save_video(sv3d_file, images_t0.unsqueeze(1))
for emb in model.conditioner.embedders:
if isinstance(emb, VideoPredictionEmbedderWithEncoder):
emb.en_and_decode_n_samples_a_time = encoding_t
model.en_and_decode_n_samples_a_time = decoding_t
# Initialize image matrix
img_matrix = [[None] * n_views for _ in range(n_frames)]
for i, v in enumerate(subsampled_views):
@@ -413,6 +419,13 @@ with gr.Blocks() as demo:
maximum=100,
step=1,
)
encoding_t = gr.Slider(
label="Encode n frames at a time",
info="Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.",
value=8,
minimum=1,
maximum=40,
)
decoding_t = gr.Slider(
label="Decode n frames at a time",
info="Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.",
@@ -440,7 +453,7 @@ with gr.Blocks() as demo:
generate_btn.click(
fn=sample_anchor,
inputs=[input_video, seed, decoding_t, denoising_steps],
inputs=[input_video, seed, encoding_t, decoding_t, denoising_steps],
outputs=[sv3d_video, anchor_video, anchor_frames],
api_name="SV4D output (5 frames)",
)
@@ -455,22 +468,22 @@ with gr.Blocks() as demo:
examples = gr.Examples(
fn=preprocess_video,
examples=[
"./assets/sv4d_example_video/test_video1.mp4",
"./assets/sv4d_example_video/test_video2.mp4",
"./assets/sv4d_example_video/green_robot.mp4",
"./assets/sv4d_example_video/dolphin.mp4",
"./assets/sv4d_example_video/lucia_v000.mp4",
"./assets/sv4d_example_video/snowboard_v000.mp4",
"./assets/sv4d_example_video/stroller_v000.mp4",
"./assets/sv4d_example_video/human5.mp4",
"./assets/sv4d_example_video/bunnyman.mp4",
"./assets/sv4d_example_video/hiphop_parrot.mp4",
"./assets/sv4d_example_video/guppie_v0.mp4",
"./assets/sv4d_example_video/wave_hello.mp4",
"./assets/sv4d_example_video/pistol_v0.mp4",
"./assets/sv4d_example_video/human7.mp4",
"./assets/sv4d_example_video/monkey.mp4",
"./assets/sv4d_example_video/train_v0.mp4",
"./assets/sv4d_videos/test_video1.mp4",
"./assets/sv4d_videos/test_video2.mp4",
"./assets/sv4d_videos/green_robot.mp4",
"./assets/sv4d_videos/dolphin.mp4",
"./assets/sv4d_videos/lucia_v000.mp4",
"./assets/sv4d_videos/snowboard_v000.mp4",
"./assets/sv4d_videos/stroller_v000.mp4",
"./assets/sv4d_videos/human5.mp4",
"./assets/sv4d_videos/bunnyman.mp4",
"./assets/sv4d_videos/hiphop_parrot.mp4",
"./assets/sv4d_videos/guppie_v0.mp4",
"./assets/sv4d_videos/wave_hello.mp4",
"./assets/sv4d_videos/pistol_v0.mp4",
"./assets/sv4d_videos/human7.mp4",
"./assets/sv4d_videos/monkey.mp4",
"./assets/sv4d_videos/train_v0.mp4",
],
inputs=[input_video],
run_on_click=True,

View File

@@ -264,7 +264,7 @@ def preprocess_video(input_path, remove_bg=False, n_frames=21, W=576, H=576, out
images_v0.append(image)
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // 10
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // 12
processed_file = os.path.join(output_folder, f"{base_count:06d}_process_input.mp4")
imageio.mimwrite(processed_file, images_v0, fps=10)
return processed_file
@@ -892,7 +892,6 @@ def do_sample(
unload_module_gpu(model.model)
unload_module_gpu(model.denoiser)
load_module_gpu(model.first_stage_model)
model.en_and_decode_n_samples_a_time = decoding_t
if isinstance(model.first_stage_model.decoder, VideoDecoder):
samples_x = model.decode_first_stage(
samples_z, timesteps=default(decoding_t, T)

View File

@@ -1,7 +1,6 @@
N_TIME: 5
N_VIEW: 8
N_FRAMES: 40
ENCODE_N_A_TIME: 8
model:
target: sgm.models.diffusion.DiffusionEngine
@@ -68,7 +67,6 @@ model:
is_ae: True
n_cond_frames: ${N_FRAMES}
n_copies: 1
en_and_decode_n_samples_a_time: ${ENCODE_N_A_TIME}
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
@@ -133,7 +131,6 @@ model:
is_ae: True
n_cond_frames: ${N_VIEW}
n_copies: 1
en_and_decode_n_samples_a_time: ${ENCODE_N_A_TIME}
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
@@ -144,7 +141,6 @@ model:
is_ae: True
n_cond_frames: ${N_TIME}
n_copies: 1
en_and_decode_n_samples_a_time: ${ENCODE_N_A_TIME}
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:

View File

@@ -10,6 +10,7 @@ import numpy as np
import torch
from fire import Fire
from sgm.modules.encoders.modules import VideoPredictionEmbedderWithEncoder
from scripts.demo.sv4d_helpers import (
decode_latents,
load_model,
@@ -35,6 +36,7 @@ def sample(
motion_bucket_id: int = 127,
cond_aug: float = 1e-5,
seed: int = 23,
encoding_t: int = 8, # Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
elevations_deg: Optional[Union[float, List[float]]] = 10.0,
@@ -45,7 +47,7 @@ def sample(
):
"""
Simple script to generate multiple novel-view videos conditioned on a video `input_path` or multiple frames, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t` and `encoding_t`.
"""
# Set model config
T = 5 # number of frames per sample
@@ -162,6 +164,10 @@ def sample(
verbose,
)
model = initial_model_load(model)
for emb in model.conditioner.embedders:
if isinstance(emb, VideoPredictionEmbedderWithEncoder):
emb.en_and_decode_n_samples_a_time = encoding_t
model.en_and_decode_n_samples_a_time = decoding_t
# Interleaved sampling for anchor frames
t0, v0 = 0, 0