mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 14:24:21 +01:00
Improved sampling (#69)
* New research features * Add new model specs --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com> * remove sd1.5 and change default refiner to 1.0 * remove asking second time for output * adapt model names * adjusted strength * Correctly pass prompt --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com>
This commit is contained in:
@@ -1,14 +1,6 @@
|
||||
import numpy as np
|
||||
from pytorch_lightning import seed_everything
|
||||
|
||||
from scripts.demo.streamlit_helpers import *
|
||||
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
|
||||
from sgm.inference.helpers import (
|
||||
do_img2img,
|
||||
do_sample,
|
||||
get_unique_embedder_keys_from_conditioner,
|
||||
perform_save_locally,
|
||||
)
|
||||
|
||||
SAVE_PATH = "outputs/demo/txt2img/"
|
||||
|
||||
@@ -42,7 +34,16 @@ SD_XL_BASE_RATIOS = {
|
||||
}
|
||||
|
||||
VERSION2SPECS = {
|
||||
"SD-XL base": {
|
||||
"SDXL-base-1.0": {
|
||||
"H": 1024,
|
||||
"W": 1024,
|
||||
"C": 4,
|
||||
"f": 8,
|
||||
"is_legacy": False,
|
||||
"config": "configs/inference/sd_xl_base.yaml",
|
||||
"ckpt": "checkpoints/sd_xl_base_1.0.safetensors",
|
||||
},
|
||||
"SDXL-base-0.9": {
|
||||
"H": 1024,
|
||||
"W": 1024,
|
||||
"C": 4,
|
||||
@@ -50,9 +51,8 @@ VERSION2SPECS = {
|
||||
"is_legacy": False,
|
||||
"config": "configs/inference/sd_xl_base.yaml",
|
||||
"ckpt": "checkpoints/sd_xl_base_0.9.safetensors",
|
||||
"is_guided": True,
|
||||
},
|
||||
"sd-2.1": {
|
||||
"SD-2.1": {
|
||||
"H": 512,
|
||||
"W": 512,
|
||||
"C": 4,
|
||||
@@ -60,9 +60,8 @@ VERSION2SPECS = {
|
||||
"is_legacy": True,
|
||||
"config": "configs/inference/sd_2_1.yaml",
|
||||
"ckpt": "checkpoints/v2-1_512-ema-pruned.safetensors",
|
||||
"is_guided": True,
|
||||
},
|
||||
"sd-2.1-768": {
|
||||
"SD-2.1-768": {
|
||||
"H": 768,
|
||||
"W": 768,
|
||||
"C": 4,
|
||||
@@ -71,7 +70,7 @@ VERSION2SPECS = {
|
||||
"config": "configs/inference/sd_2_1_768.yaml",
|
||||
"ckpt": "checkpoints/v2-1_768-ema-pruned.safetensors",
|
||||
},
|
||||
"SDXL-Refiner": {
|
||||
"SDXL-refiner-0.9": {
|
||||
"H": 1024,
|
||||
"W": 1024,
|
||||
"C": 4,
|
||||
@@ -79,7 +78,15 @@ VERSION2SPECS = {
|
||||
"is_legacy": True,
|
||||
"config": "configs/inference/sd_xl_refiner.yaml",
|
||||
"ckpt": "checkpoints/sd_xl_refiner_0.9.safetensors",
|
||||
"is_guided": True,
|
||||
},
|
||||
"SDXL-refiner-1.0": {
|
||||
"H": 1024,
|
||||
"W": 1024,
|
||||
"C": 4,
|
||||
"f": 8,
|
||||
"is_legacy": True,
|
||||
"config": "configs/inference/sd_xl_refiner.yaml",
|
||||
"ckpt": "checkpoints/sd_xl_refiner_1.0.safetensors",
|
||||
},
|
||||
}
|
||||
|
||||
@@ -103,18 +110,19 @@ def load_img(display=True, key=None, device="cuda"):
|
||||
|
||||
|
||||
def run_txt2img(
|
||||
state, version, version_dict, is_legacy=False, return_latents=False, filter=None
|
||||
state,
|
||||
version,
|
||||
version_dict,
|
||||
is_legacy=False,
|
||||
return_latents=False,
|
||||
filter=None,
|
||||
stage2strength=None,
|
||||
):
|
||||
if version == "SD-XL base":
|
||||
ratio = st.sidebar.selectbox("Ratio:", list(SD_XL_BASE_RATIOS.keys()), 10)
|
||||
W, H = SD_XL_BASE_RATIOS[ratio]
|
||||
if version.startswith("SDXL-base"):
|
||||
W, H = st.selectbox("Resolution:", list(SD_XL_BASE_RATIOS.values()), 10)
|
||||
else:
|
||||
H = st.sidebar.number_input(
|
||||
"H", value=version_dict["H"], min_value=64, max_value=2048
|
||||
)
|
||||
W = st.sidebar.number_input(
|
||||
"W", value=version_dict["W"], min_value=64, max_value=2048
|
||||
)
|
||||
H = st.number_input("H", value=version_dict["H"], min_value=64, max_value=2048)
|
||||
W = st.number_input("W", value=version_dict["W"], min_value=64, max_value=2048)
|
||||
C = version_dict["C"]
|
||||
F = version_dict["f"]
|
||||
|
||||
@@ -130,16 +138,11 @@ def run_txt2img(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
)
|
||||
num_rows, num_cols, sampler = init_sampling(
|
||||
use_identity_guider=not version_dict["is_guided"]
|
||||
)
|
||||
|
||||
sampler, num_rows, num_cols = init_sampling(stage2strength=stage2strength)
|
||||
num_samples = num_rows * num_cols
|
||||
|
||||
if st.button("Sample"):
|
||||
st.write(f"**Model I:** {version}")
|
||||
outputs = st.empty()
|
||||
st.text("Sampling")
|
||||
out = do_sample(
|
||||
state["model"],
|
||||
sampler,
|
||||
@@ -153,13 +156,16 @@ def run_txt2img(
|
||||
return_latents=return_latents,
|
||||
filter=filter,
|
||||
)
|
||||
show_samples(out, outputs)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def run_img2img(
|
||||
state, version_dict, is_legacy=False, return_latents=False, filter=None
|
||||
state,
|
||||
version_dict,
|
||||
is_legacy=False,
|
||||
return_latents=False,
|
||||
filter=None,
|
||||
stage2strength=None,
|
||||
):
|
||||
img = load_img()
|
||||
if img is None:
|
||||
@@ -175,19 +181,19 @@ def run_img2img(
|
||||
value_dict = init_embedder_options(
|
||||
get_unique_embedder_keys_from_conditioner(state["model"].conditioner),
|
||||
init_dict,
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
)
|
||||
strength = st.number_input(
|
||||
"**Img2Img Strength**", value=0.5, min_value=0.0, max_value=1.0
|
||||
"**Img2Img Strength**", value=0.75, min_value=0.0, max_value=1.0
|
||||
)
|
||||
num_rows, num_cols, sampler = init_sampling(
|
||||
sampler, num_rows, num_cols = init_sampling(
|
||||
img2img_strength=strength,
|
||||
use_identity_guider=not version_dict["is_guided"],
|
||||
stage2strength=stage2strength,
|
||||
)
|
||||
num_samples = num_rows * num_cols
|
||||
|
||||
if st.button("Sample"):
|
||||
outputs = st.empty()
|
||||
st.text("Sampling")
|
||||
out = do_img2img(
|
||||
repeat(img, "1 ... -> n ...", n=num_samples),
|
||||
state["model"],
|
||||
@@ -198,7 +204,6 @@ def run_img2img(
|
||||
return_latents=return_latents,
|
||||
filter=filter,
|
||||
)
|
||||
show_samples(out, outputs)
|
||||
return out
|
||||
|
||||
|
||||
@@ -210,6 +215,7 @@ def apply_refiner(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
filter=None,
|
||||
finish_denoising=False,
|
||||
):
|
||||
init_dict = {
|
||||
"orig_width": input.shape[3] * 8,
|
||||
@@ -237,6 +243,7 @@ def apply_refiner(
|
||||
num_samples,
|
||||
skip_encode=True,
|
||||
filter=filter,
|
||||
add_noise=not finish_denoising,
|
||||
)
|
||||
|
||||
return samples
|
||||
@@ -249,20 +256,22 @@ if __name__ == "__main__":
|
||||
mode = st.radio("Mode", ("txt2img", "img2img"), 0)
|
||||
st.write("__________________________")
|
||||
|
||||
if version == "SD-XL base":
|
||||
add_pipeline = st.checkbox("Load SDXL-Refiner?", False)
|
||||
set_lowvram_mode(st.checkbox("Low vram mode", True))
|
||||
|
||||
if version.startswith("SDXL-base"):
|
||||
add_pipeline = st.checkbox("Load SDXL-refiner?", False)
|
||||
st.write("__________________________")
|
||||
else:
|
||||
add_pipeline = False
|
||||
|
||||
filter = DeepFloydDataFiltering(verbose=False)
|
||||
|
||||
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
|
||||
seed_everything(seed)
|
||||
|
||||
save_locally, save_path = init_save_locally(os.path.join(SAVE_PATH, version))
|
||||
|
||||
state = init_st(version_dict)
|
||||
state = init_st(version_dict, load_filter=True)
|
||||
if state["msg"]:
|
||||
st.info(state["msg"])
|
||||
model = state["model"]
|
||||
|
||||
is_legacy = version_dict["is_legacy"]
|
||||
@@ -276,29 +285,34 @@ if __name__ == "__main__":
|
||||
else:
|
||||
negative_prompt = "" # which is unused
|
||||
|
||||
stage2strength = None
|
||||
finish_denoising = False
|
||||
|
||||
if add_pipeline:
|
||||
st.write("__________________________")
|
||||
|
||||
version2 = "SDXL-Refiner"
|
||||
version2 = st.selectbox("Refiner:", ["SDXL-refiner-1.0", "SDXL-refiner-0.9"])
|
||||
st.warning(
|
||||
f"Running with {version2} as the second stage model. Make sure to provide (V)RAM :) "
|
||||
)
|
||||
st.write("**Refiner Options:**")
|
||||
|
||||
version_dict2 = VERSION2SPECS[version2]
|
||||
state2 = init_st(version_dict2)
|
||||
state2 = init_st(version_dict2, load_filter=False)
|
||||
st.info(state2["msg"])
|
||||
|
||||
stage2strength = st.number_input(
|
||||
"**Refinement strength**", value=0.3, min_value=0.0, max_value=1.0
|
||||
"**Refinement strength**", value=0.15, min_value=0.0, max_value=1.0
|
||||
)
|
||||
|
||||
sampler2 = init_sampling(
|
||||
sampler2, *_ = init_sampling(
|
||||
key=2,
|
||||
img2img_strength=stage2strength,
|
||||
use_identity_guider=not version_dict2["is_guided"],
|
||||
get_num_samples=False,
|
||||
specify_num_samples=False,
|
||||
)
|
||||
st.write("__________________________")
|
||||
finish_denoising = st.checkbox("Finish denoising with refiner.", True)
|
||||
if not finish_denoising:
|
||||
stage2strength = None
|
||||
|
||||
if mode == "txt2img":
|
||||
out = run_txt2img(
|
||||
@@ -307,7 +321,8 @@ if __name__ == "__main__":
|
||||
version_dict,
|
||||
is_legacy=is_legacy,
|
||||
return_latents=add_pipeline,
|
||||
filter=filter,
|
||||
filter=state.get("filter"),
|
||||
stage2strength=stage2strength,
|
||||
)
|
||||
elif mode == "img2img":
|
||||
out = run_img2img(
|
||||
@@ -315,7 +330,8 @@ if __name__ == "__main__":
|
||||
version_dict,
|
||||
is_legacy=is_legacy,
|
||||
return_latents=add_pipeline,
|
||||
filter=filter,
|
||||
filter=state.get("filter"),
|
||||
stage2strength=stage2strength,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown mode {mode}")
|
||||
@@ -326,7 +342,6 @@ if __name__ == "__main__":
|
||||
samples_z = None
|
||||
|
||||
if add_pipeline and samples_z is not None:
|
||||
outputs = st.empty()
|
||||
st.write("**Running Refinement Stage**")
|
||||
samples = apply_refiner(
|
||||
samples_z,
|
||||
@@ -335,9 +350,9 @@ if __name__ == "__main__":
|
||||
samples_z.shape[0],
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt if is_legacy else "",
|
||||
filter=filter,
|
||||
filter=state.get("filter"),
|
||||
finish_denoising=finish_denoising,
|
||||
)
|
||||
show_samples(samples, outputs)
|
||||
|
||||
if save_locally and samples is not None:
|
||||
perform_save_locally(save_path, samples)
|
||||
|
||||
Reference in New Issue
Block a user