mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-21 15:24:22 +01:00
Pre release changes for production (#59)
* clean requirements * rm taming deps * isort, black * mv lipips, license * clean vq, fix path * fix loss path, gitignore * tested requirements pt13 * fix numpy req for python3.8, add tests * fix name * fix dep scipy 3.8 pt2 * add black test formatter
This commit is contained in:
147
sgm/modules/autoencoding/lpips/loss/lpips.py
Normal file
147
sgm/modules/autoencoding/lpips/loss/lpips.py
Normal file
@@ -0,0 +1,147 @@
|
||||
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision import models
|
||||
|
||||
from ..util import get_ckpt_path
|
||||
|
||||
|
||||
class LPIPS(nn.Module):
|
||||
# Learned perceptual metric
|
||||
def __init__(self, use_dropout=True):
|
||||
super().__init__()
|
||||
self.scaling_layer = ScalingLayer()
|
||||
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
||||
self.net = vgg16(pretrained=True, requires_grad=False)
|
||||
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
||||
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
||||
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
||||
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
||||
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
||||
self.load_from_pretrained()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def load_from_pretrained(self, name="vgg_lpips"):
|
||||
ckpt = get_ckpt_path(name, "sgm/modules/autoencoding/lpips/loss")
|
||||
self.load_state_dict(
|
||||
torch.load(ckpt, map_location=torch.device("cpu")), strict=False
|
||||
)
|
||||
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, name="vgg_lpips"):
|
||||
if name != "vgg_lpips":
|
||||
raise NotImplementedError
|
||||
model = cls()
|
||||
ckpt = get_ckpt_path(name)
|
||||
model.load_state_dict(
|
||||
torch.load(ckpt, map_location=torch.device("cpu")), strict=False
|
||||
)
|
||||
return model
|
||||
|
||||
def forward(self, input, target):
|
||||
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
||||
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
||||
feats0, feats1, diffs = {}, {}, {}
|
||||
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
||||
for kk in range(len(self.chns)):
|
||||
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(
|
||||
outs1[kk]
|
||||
)
|
||||
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
||||
|
||||
res = [
|
||||
spatial_average(lins[kk].model(diffs[kk]), keepdim=True)
|
||||
for kk in range(len(self.chns))
|
||||
]
|
||||
val = res[0]
|
||||
for l in range(1, len(self.chns)):
|
||||
val += res[l]
|
||||
return val
|
||||
|
||||
|
||||
class ScalingLayer(nn.Module):
|
||||
def __init__(self):
|
||||
super(ScalingLayer, self).__init__()
|
||||
self.register_buffer(
|
||||
"shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None]
|
||||
)
|
||||
self.register_buffer(
|
||||
"scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None]
|
||||
)
|
||||
|
||||
def forward(self, inp):
|
||||
return (inp - self.shift) / self.scale
|
||||
|
||||
|
||||
class NetLinLayer(nn.Module):
|
||||
"""A single linear layer which does a 1x1 conv"""
|
||||
|
||||
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
||||
super(NetLinLayer, self).__init__()
|
||||
layers = (
|
||||
[
|
||||
nn.Dropout(),
|
||||
]
|
||||
if (use_dropout)
|
||||
else []
|
||||
)
|
||||
layers += [
|
||||
nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
|
||||
]
|
||||
self.model = nn.Sequential(*layers)
|
||||
|
||||
|
||||
class vgg16(torch.nn.Module):
|
||||
def __init__(self, requires_grad=False, pretrained=True):
|
||||
super(vgg16, self).__init__()
|
||||
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
||||
self.slice1 = torch.nn.Sequential()
|
||||
self.slice2 = torch.nn.Sequential()
|
||||
self.slice3 = torch.nn.Sequential()
|
||||
self.slice4 = torch.nn.Sequential()
|
||||
self.slice5 = torch.nn.Sequential()
|
||||
self.N_slices = 5
|
||||
for x in range(4):
|
||||
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(4, 9):
|
||||
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(9, 16):
|
||||
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(16, 23):
|
||||
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(23, 30):
|
||||
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
||||
if not requires_grad:
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, X):
|
||||
h = self.slice1(X)
|
||||
h_relu1_2 = h
|
||||
h = self.slice2(h)
|
||||
h_relu2_2 = h
|
||||
h = self.slice3(h)
|
||||
h_relu3_3 = h
|
||||
h = self.slice4(h)
|
||||
h_relu4_3 = h
|
||||
h = self.slice5(h)
|
||||
h_relu5_3 = h
|
||||
vgg_outputs = namedtuple(
|
||||
"VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"]
|
||||
)
|
||||
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
||||
return out
|
||||
|
||||
|
||||
def normalize_tensor(x, eps=1e-10):
|
||||
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
|
||||
return x / (norm_factor + eps)
|
||||
|
||||
|
||||
def spatial_average(x, keepdim=True):
|
||||
return x.mean([2, 3], keepdim=keepdim)
|
||||
Reference in New Issue
Block a user