add SV4D 2.0 (#440)

* add SV4D 2.0

* add SV4D 2.0

* Combined sv4dv2 and sv4dv2_8views sampling scripts

---------

Co-authored-by: Vikram Voleti <vikram@ip-26-0-153-234.us-west-2.compute.internal>
This commit is contained in:
chunhanyao-stable
2025-05-20 07:38:11 -07:00
committed by GitHub
parent 1659a1c09b
commit c3147b86db
44 changed files with 1000 additions and 116 deletions

View File

@@ -13,9 +13,6 @@ from einops import rearrange, repeat
from omegaconf import ListConfig, OmegaConf
from PIL import Image, ImageSequence
from rembg import remove
from torch import autocast
from torchvision.transforms import ToTensor
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
from sgm.modules.autoencoding.temporal_ae import VideoDecoder
from sgm.modules.diffusionmodules.guiders import (
@@ -34,6 +31,8 @@ from sgm.modules.diffusionmodules.sampling import (
LinearMultistepSampler,
)
from sgm.util import default, instantiate_from_config
from torch import autocast
from torchvision.transforms import ToTensor
def load_module_gpu(model):
@@ -165,7 +164,16 @@ def read_video(
return images_v0
def preprocess_video(input_path, remove_bg=False, n_frames=21, W=576, H=576, output_folder=None, image_frame_ratio = 0.917):
def preprocess_video(
input_path,
remove_bg=False,
n_frames=21,
W=576,
H=576,
output_folder=None,
image_frame_ratio=0.917,
base_count=0,
):
print(f"preprocess {input_path}")
if output_folder is None:
output_folder = os.path.dirname(input_path)
@@ -199,7 +207,9 @@ def preprocess_video(input_path, remove_bg=False, n_frames=21, W=576, H=576, out
images = [Image.open(img_path) for img_path in all_img_paths]
if len(images) != n_frames:
raise ValueError(f"Input video contains {len(images)} frames, fewer than {n_frames} frames.")
raise ValueError(
f"Input video contains {len(images)} frames, fewer than {n_frames} frames."
)
# Remove background
for i, image in enumerate(images):
@@ -226,18 +236,28 @@ def preprocess_video(input_path, remove_bg=False, n_frames=21, W=576, H=576, out
else:
# assume the input image has white background
ret, mask = cv2.threshold(
(np.array(image).mean(-1) <= white_thresh).astype(np.uint8) * 255, 0, 255, cv2.THRESH_BINARY
(np.array(image).mean(-1) <= white_thresh).astype(np.uint8) * 255,
0,
255,
cv2.THRESH_BINARY,
)
x, y, w, h = cv2.boundingRect(mask)
box_coord[0] = min(box_coord[0], x)
box_coord[1] = min(box_coord[1], y)
box_coord[2] = max(box_coord[2], x + w)
box_coord[3] = max(box_coord[3], y + h)
box_square = max(original_center[0] - box_coord[0], original_center[1] - box_coord[1])
box_square = max(
original_center[0] - box_coord[0], original_center[1] - box_coord[1]
)
box_square = max(box_square, box_coord[2] - original_center[0])
box_square = max(box_square, box_coord[3] - original_center[1])
x, y, w, h = original_center[0] - box_square, original_center[1] - box_square, 2 * box_square, 2 * box_square
x, y = max(0, original_center[0] - box_square), max(
0, original_center[1] - box_square
)
w, h = min(image_arr.shape[0], 2 * box_square), min(
image_arr.shape[1], 2 * box_square
)
box_size = box_square * 2
for image in images:
@@ -245,15 +265,15 @@ def preprocess_video(input_path, remove_bg=False, n_frames=21, W=576, H=576, out
image = image.convert("RGBA")
image_arr = np.array(image)
side_len = (
int(box_size / image_frame_ratio)
if image_frame_ratio is not None
else in_w
int(box_size / image_frame_ratio) if image_frame_ratio is not None else in_w
)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2
box_size_w = min(w, box_size)
box_size_h = min(h, box_size)
padded_image[
center - box_size // 2 : center - box_size // 2 + box_size,
center - box_size // 2 : center - box_size // 2 + box_size,
center - box_size_w // 2 : center - box_size_w // 2 + box_size_w,
center - box_size_h // 2 : center - box_size_h // 2 + box_size_h,
] = image_arr[x : x + w, y : y + h]
rgba = Image.fromarray(padded_image).resize((W, H), Image.LANCZOS)
@@ -261,14 +281,14 @@ def preprocess_video(input_path, remove_bg=False, n_frames=21, W=576, H=576, out
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
image = (rgb * 255).astype(np.uint8)
images_v0.append(image)
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // 12
processed_file = os.path.join(output_folder, f"{base_count:06d}_process_input.mp4")
imageio.mimwrite(processed_file, images_v0, fps=10)
return processed_file
def sample_sv3d(
image,
num_frames: Optional[int] = None, # 21 for SV3D
@@ -326,6 +346,7 @@ def sample_sv3d(
with torch.no_grad():
with torch.autocast(device):
load_module_gpu(model.conditioner)
batch, batch_uc = get_batch_sv3d(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
@@ -341,6 +362,7 @@ def sample_sv3d(
"cond_frames_without_noise",
],
)
unload_module_gpu(model.conditioner)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
@@ -361,11 +383,17 @@ def sample_sv3d(
model.model, input, sigma, c, **additional_model_inputs
)
load_module_gpu(model.model)
load_module_gpu(model.denoiser)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
unload_module_gpu(model.model)
unload_module_gpu(model.denoiser)
unload_module_gpu(model.model)
load_module_gpu(model.first_stage_model)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
unload_module_gpu(model.first_stage_model)
samples_x[-1:] = value_dict["cond_frames_without_noise"]
samples = torch.clamp(samples_x, min=-1.0, max=1.0)
@@ -373,13 +401,17 @@ def sample_sv3d(
return samples
def decode_latents(model, samples_z, img_matrix, frame_indices, view_indices, timesteps):
def decode_latents(
model, samples_z, img_matrix, frame_indices, view_indices, timesteps
):
load_module_gpu(model.first_stage_model)
for t in frame_indices:
for v in view_indices:
if t != 0 and v != 0:
if True: # t != 0 and v != 0:
if isinstance(model.first_stage_model.decoder, VideoDecoder):
samples_x = model.decode_first_stage(samples_z[t, v][None], timesteps=timesteps)
samples_x = model.decode_first_stage(
samples_z[t, v][None], timesteps=timesteps
)
else:
samples_x = model.decode_first_stage(samples_z[t, v][None])
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
@@ -555,12 +587,15 @@ def get_guider_no_st(options, key):
}
elif guider == "SpatiotemporalPredictionGuider":
max_scale = options.get("cfg", 1.5)
min_scale = options.get("min_cfg", 1.0)
guider_config = {
"target": "sgm.modules.diffusionmodules.guiders.SpatiotemporalPredictionGuider",
"params": {
"max_scale": max_scale,
"min_scale": min_scale,
"num_frames": options["num_frames"],
"num_views": options["num_views"],
**additional_guider_kwargs,
},
}
@@ -652,7 +687,7 @@ def init_sampling_no_st(
options = {} if options is None else options
num_rows, num_cols = 1, 1
steps = options.get("num_steps", 40)
steps = options.get("num_steps", 50)
sampler = [
"EulerEDMSampler",
"HeunEDMSampler",
@@ -688,6 +723,7 @@ def run_img2vid(
cond_motion=None,
cond_view=None,
decoding_t=None,
cond_mv=True,
):
options = version_dict["options"]
H = version_dict["H"]
@@ -714,7 +750,10 @@ def run_img2vid(
value_dict["is_image"] = 0
value_dict["is_webvid"] = 0
value_dict["image_only_indicator"] = 0
if cond_mv:
value_dict["image_only_indicator"] = 1.0
else:
value_dict["image_only_indicator"] = 0.0
cond_aug = 0.00
if cond_motion is not None:
@@ -722,8 +761,6 @@ def run_img2vid(
value_dict["cond_frames"] = (
cond_motion[:, None].repeat(1, cond_view.shape[0], 1, 1, 1).flatten(0, 1)
)
value_dict["cond_motion"] = cond_motion
value_dict["cond_view"] = cond_view
else:
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
@@ -760,46 +797,112 @@ def run_img2vid(
return samples
def prepare_inputs(frame_indices, img_matrix, v0, view_indices, model, version_dict, seed, polars, azims):
load_module_gpu(model.conditioner)
def prepare_inputs_forward_backward(
img_matrix,
view_indices,
frame_indices,
v0,
t0,
t1,
model,
version_dict,
seed,
polars,
azims,
):
# forward sampling
forward_frame_indices = frame_indices.copy()
image = img_matrix[t0][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in forward_frame_indices], 0)
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
forward_inputs = prepare_sampling(
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
# backward sampling
backward_frame_indices = frame_indices[::-1].copy()
image = img_matrix[t1][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in backward_frame_indices], 0)
cond_view = torch.cat([img_matrix[t1][v] for v in view_indices], 0)
backward_inputs = prepare_sampling(
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
return (
forward_inputs,
forward_frame_indices,
backward_inputs,
backward_frame_indices,
)
def prepare_inputs(
frame_indices,
img_matrix,
v0,
view_indices,
model,
version_dict,
seed,
polars,
azims,
):
load_module_gpu(model.conditioner)
# forward sampling
forward_frame_indices = frame_indices.copy()
t0 = forward_frame_indices[0]
image = img_matrix[t0][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in forward_frame_indices], 0)
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
forward_inputs = prepare_sampling(
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
# backward sampling
backward_frame_indices = frame_indices[
::-1
].copy()
backward_frame_indices = frame_indices[::-1].copy()
t0 = backward_frame_indices[0]
image = img_matrix[t0][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in backward_frame_indices], 0)
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
backward_inputs = prepare_sampling(
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
unload_module_gpu(model.conditioner)
return forward_inputs, forward_frame_indices, backward_inputs, backward_frame_indices
return (
forward_inputs,
forward_frame_indices,
backward_inputs,
backward_frame_indices,
)
def do_sample(
model,
@@ -854,6 +957,10 @@ def do_sample(
lambda y: y[k][: math.prod(num_samples)].to("cuda"), (c, uc)
)
if value_dict["image_only_indicator"] == 0:
c["cond_view"] *= 0
uc["cond_view"] *= 0
additional_model_inputs = {}
for k in batch2model_input:
if k == "image_only_indicator":
@@ -869,9 +976,12 @@ def do_sample(
SpatiotemporalPredictionGuider,
),
):
additional_model_inputs[k] = torch.zeros(
num_samples[0] * 2, num_samples[1]
).to("cuda")
additional_model_inputs[k] = (
torch.zeros(num_samples[0] * 2, num_samples[1]).to(
"cuda"
)
+ value_dict["image_only_indicator"]
)
else:
additional_model_inputs[k] = torch.zeros(num_samples).to(
"cuda"
@@ -886,11 +996,13 @@ def do_sample(
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
load_module_gpu(model.model)
load_module_gpu(model.denoiser)
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
unload_module_gpu(model.model)
unload_module_gpu(model.denoiser)
unload_module_gpu(model.model)
load_module_gpu(model.first_stage_model)
if isinstance(model.first_stage_model.decoder, VideoDecoder):
samples_x = model.decode_first_stage(
@@ -900,11 +1012,13 @@ def do_sample(
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
unload_module_gpu(model.first_stage_model)
if filter is not None:
samples = filter(samples)
if return_latents:
return samples, samples_z
return samples
@@ -931,6 +1045,7 @@ def prepare_sampling_(
num_samples = [num_samples, T]
else:
num_samples = [num_samples]
load_module_gpu(model.conditioner)
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
@@ -944,6 +1059,8 @@ def prepare_sampling_(
force_uc_zero_embeddings=force_uc_zero_embeddings,
force_cond_zero_embeddings=force_cond_zero_embeddings,
)
unload_module_gpu(model.conditioner)
for k in c:
if not k == "crossattn":
c[k], uc[k] = map(
@@ -965,19 +1082,25 @@ def prepare_sampling_(
SpatiotemporalPredictionGuider,
),
):
additional_model_inputs[k] = torch.zeros(
num_samples[0] * 2, num_samples[1]
).to("cuda")
additional_model_inputs[k] = (
torch.zeros(num_samples[0] * 2, num_samples[1]).to(
"cuda"
)
+ value_dict["image_only_indicator"]
)
else:
additional_model_inputs[k] = torch.zeros(num_samples).to(
"cuda"
)
else:
additional_model_inputs[k] = batch[k]
return c, uc, additional_model_inputs
def do_sample_per_step(model, sampler, noisy_latents, c, uc, step, additional_model_inputs):
def do_sample_per_step(
model, sampler, noisy_latents, c, uc, step, additional_model_inputs
):
precision_scope = autocast
with torch.no_grad():
with precision_scope("cuda"):
@@ -1015,6 +1138,8 @@ def do_sample_per_step(model, sampler, noisy_latents, c, uc, step, additional_mo
uc,
gamma,
)
unload_module_gpu(model.denoiser)
unload_module_gpu(model.model)
return samples_z
@@ -1053,7 +1178,7 @@ def prepare_sampling(
value_dict["is_image"] = 0
value_dict["is_webvid"] = 0
value_dict["image_only_indicator"] = 0
value_dict["image_only_indicator"] = 1.0
cond_aug = 0.00
if cond_motion is not None:
@@ -1061,8 +1186,6 @@ def prepare_sampling(
value_dict["cond_frames"] = (
cond_motion[:, None].repeat(1, cond_view.shape[0], 1, 1, 1).flatten(0, 1)
)
value_dict["cond_motion"] = cond_motion
value_dict["cond_view"] = cond_view
else:
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
@@ -1073,8 +1196,6 @@ def prepare_sampling(
value_dict["cond_motion"] = cond_motion
value_dict["cond_view"] = cond_view
# seed_everything(seed)
options["num_frames"] = T
sampler, num_rows, num_cols = init_sampling_no_st(options=options)
num_samples = num_rows * num_cols
@@ -1269,6 +1390,7 @@ def load_model(
num_frames: int,
num_steps: int,
verbose: bool = False,
ckpt_path: str = None,
):
config = OmegaConf.load(config)
if device == "cuda":
@@ -1281,6 +1403,8 @@ def load_model(
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames
)
if ckpt_path is not None:
config.model.params.ckpt_path = ckpt_path
if device == "cuda":
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval()