SV3D inference code (#300)

* Makes init changes for SV3D

* Small fixes : cond_aug

* Fixes SV3D checkpoint, fixes rembg

* Black formatting

* Adds streamlit demo, fixes simple sample script

* Removes SV3D video_decoder, keeps SV3D image_decoder

* Updates README

* Minor updates

* Remove GSO script

---------

Co-authored-by: Vikram Voleti <vikram@ip-26-0-153-234.us-west-2.compute.internal>
This commit is contained in:
Vikram Voleti
2024-03-18 23:03:02 +05:30
committed by GitHub
parent c51e4e30c2
commit b4b7b644a1
15 changed files with 937 additions and 85 deletions

View File

@@ -1,6 +1,6 @@
import logging
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Tuple, Union
from typing import Dict, List, Literal, Optional, Tuple, Union
import torch
from einops import rearrange, repeat
@@ -97,3 +97,35 @@ class LinearPredictionGuider(Guider):
assert c[k] == uc[k]
c_out[k] = c[k]
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
class TrianglePredictionGuider(LinearPredictionGuider):
def __init__(
self,
max_scale: float,
num_frames: int,
min_scale: float = 1.0,
period: float | List[float] = 1.0,
period_fusing: Literal["mean", "multiply", "max"] = "max",
additional_cond_keys: Optional[Union[List[str], str]] = None,
):
super().__init__(max_scale, num_frames, min_scale, additional_cond_keys)
values = torch.linspace(0, 1, num_frames)
# Constructs a triangle wave
if isinstance(period, float):
period = [period]
scales = []
for p in period:
scales.append(self.triangle_wave(values, p))
if period_fusing == "mean":
scale = sum(scales) / len(period)
elif period_fusing == "multiply":
scale = torch.prod(torch.stack(scales), dim=0)
elif period_fusing == "max":
scale = torch.max(torch.stack(scales), dim=0).values
self.scale = (scale * (max_scale - min_scale) + min_scale).unsqueeze(0)
def triangle_wave(self, values: torch.Tensor, period) -> torch.Tensor:
return 2 * (values / period - torch.floor(values / period + 0.5)).abs()