SV3D inference code (#300)

* Makes init changes for SV3D

* Small fixes : cond_aug

* Fixes SV3D checkpoint, fixes rembg

* Black formatting

* Adds streamlit demo, fixes simple sample script

* Removes SV3D video_decoder, keeps SV3D image_decoder

* Updates README

* Minor updates

* Remove GSO script

---------

Co-authored-by: Vikram Voleti <vikram@ip-26-0-153-234.us-west-2.compute.internal>
This commit is contained in:
Vikram Voleti
2024-03-18 23:03:02 +05:30
committed by GitHub
parent c51e4e30c2
commit b4b7b644a1
15 changed files with 937 additions and 85 deletions

View File

@@ -1,27 +1,29 @@
import math
import os
import sys
from glob import glob
from pathlib import Path
from typing import Optional
from typing import List, Optional
sys.path.append(os.path.realpath(os.path.join(os.path.dirname(__file__), "../../")))
import cv2
import imageio
import numpy as np
import torch
from einops import rearrange, repeat
from fire import Fire
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import ToTensor
from scripts.util.detection.nsfw_and_watermark_dectection import \
DeepFloydDataFiltering
from rembg import remove
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config
from torchvision.transforms import ToTensor
def sample(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
num_frames: Optional[int] = None,
num_frames: Optional[int] = None, # 21 for SV3D
num_steps: Optional[int] = None,
version: str = "svd",
fps_id: int = 6,
@@ -31,6 +33,10 @@ def sample(
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: Optional[str] = None,
elevations_deg: Optional[float | List[float]] = 10.0, # For SV3D
azimuths_deg: Optional[float | List[float]] = None, # For SV3D
image_frame_ratio: Optional[float] = None,
verbose: Optional[bool] = False,
):
"""
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
@@ -61,6 +67,24 @@ def sample(
output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/"
)
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml"
elif version == "sv3d_u":
num_frames = 21
num_steps = default(num_steps, 50)
output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_u/")
model_config = "scripts/sampling/configs/sv3d_u.yaml"
cond_aug = 1e-5
elif version == "sv3d_p":
num_frames = 21
num_steps = default(num_steps, 50)
output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_p/")
model_config = "scripts/sampling/configs/sv3d_p.yaml"
cond_aug = 1e-5
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
elevations_deg = [elevations_deg] * num_frames
polars_rad = [np.deg2rad(90 - e) for e in elevations_deg]
if azimuths_deg is None:
azimuths_deg = np.linspace(0, 360, num_frames + 1)[1:] % 360
azimuths_rad = [np.deg2rad(a) for a in azimuths_deg]
else:
raise ValueError(f"Version {version} does not exist.")
@@ -69,6 +93,7 @@ def sample(
device,
num_frames,
num_steps,
verbose,
)
torch.manual_seed(seed)
@@ -93,20 +118,56 @@ def sample(
raise ValueError
for input_img_path in all_img_paths:
with Image.open(input_img_path) as image:
if "sv3d" in version:
image = Image.open(input_img_path)
if image.mode == "RGBA":
image = image.convert("RGB")
w, h = image.size
pass
else:
# remove bg
image.thumbnail([768, 768], Image.Resampling.LANCZOS)
image = remove(image.convert("RGBA"), alpha_matting=True)
if h % 64 != 0 or w % 64 != 0:
width, height = map(lambda x: x - x % 64, (w, h))
image = image.resize((width, height))
print(
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
)
# resize object in frame
image_arr = np.array(image)
in_w, in_h = image_arr.shape[:2]
ret, mask = cv2.threshold(
np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY
)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
side_len = (
int(max_size / image_frame_ratio)
if image_frame_ratio is not None
else in_w
)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2
padded_image[
center - h // 2 : center - h // 2 + h,
center - w // 2 : center - w // 2 + w,
] = image_arr[y : y + h, x : x + w]
# resize frame to 576x576
rgba = Image.fromarray(padded_image).resize((576, 576), Image.LANCZOS)
# white bg
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
image = ToTensor()(image)
image = image * 2.0 - 1.0
else:
with Image.open(input_img_path) as image:
if image.mode == "RGBA":
input_image = image.convert("RGB")
w, h = image.size
if h % 64 != 0 or w % 64 != 0:
width, height = map(lambda x: x - x % 64, (w, h))
input_image = input_image.resize((width, height))
print(
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
)
image = ToTensor()(input_image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
@@ -114,10 +175,14 @@ def sample(
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if (H, W) != (576, 1024):
if (H, W) != (576, 1024) and "sv3d" not in version:
print(
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
)
if (H, W) != (576, 576) and "sv3d" in version:
print(
"WARNING: The conditioning frame you provided is not 576x576. This leads to suboptimal performance as model was only trained on 576x576."
)
if motion_bucket_id > 255:
print(
"WARNING: High motion bucket! This may lead to suboptimal performance."
@@ -130,12 +195,14 @@ def sample(
print("WARNING: Large fps value! This may lead to suboptimal performance.")
value_dict = {}
value_dict["cond_frames_without_noise"] = image
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
value_dict["cond_aug"] = cond_aug
if "sv3d_p" in version:
value_dict["polars_rad"] = polars_rad
value_dict["azimuths_rad"] = azimuths_rad
with torch.no_grad():
with torch.autocast(device):
@@ -177,16 +244,15 @@ def sample(
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
if "sv3d" in version:
samples_x[-1:] = value_dict["cond_frames_without_noise"]
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
writer = cv2.VideoWriter(
video_path,
cv2.VideoWriter_fourcc(*"MP4V"),
fps_id + 1,
(samples.shape[-1], samples.shape[-2]),
imageio.imwrite(
os.path.join(output_folder, f"{base_count:06d}.jpg"), input_image
)
samples = embed_watermark(samples)
@@ -197,10 +263,8 @@ def sample(
.numpy()
.astype(np.uint8)
)
for frame in vid:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
writer.write(frame)
writer.release()
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
imageio.mimwrite(video_path, vid)
def get_unique_embedder_keys_from_conditioner(conditioner):
@@ -230,12 +294,10 @@ def get_batch(keys, value_dict, N, T, device):
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
elif key == "cond_frames" or key == "cond_frames_without_noise":
batch[key] = repeat(value_dict[key], "1 ... -> b ...", b=N[0])
elif key == "polars_rad" or key == "azimuths_rad":
batch[key] = torch.tensor(value_dict[key]).to(device).repeat(N[0])
else:
batch[key] = value_dict[key]
@@ -253,6 +315,7 @@ def load_model(
device: str,
num_frames: int,
num_steps: int,
verbose: bool = False,
):
config = OmegaConf.load(config)
if device == "cuda":
@@ -260,6 +323,7 @@ def load_model(
0
].params.open_clip_embedding_config.params.init_device = device
config.model.params.sampler_config.params.verbose = verbose
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames