SV4D: reduce the memory consumption and speed up

This commit is contained in:
ymxie97
2024-08-02 04:59:37 +00:00
parent e0596f1aca
commit 854bd4f0df
3 changed files with 253 additions and 114 deletions

View File

@@ -121,10 +121,6 @@ def save_video(file_name, imgs, fps=10):
def read_video( def read_video(
input_path: str, input_path: str,
n_frames: int, n_frames: int,
W: int,
H: int,
remove_bg: bool = False,
image_frame_ratio: Optional[float] = None,
device: str = "cuda", device: str = "cuda",
): ):
path = Path(input_path) path = Path(input_path)
@@ -158,46 +154,120 @@ def read_video(
if len(images) < n_frames: if len(images) < n_frames:
images = (images + images[::-1])[:n_frames] images = (images + images[::-1])[:n_frames]
if len(images) != n_frames: if len(images) != n_frames:
raise ValueError(f"Input video contains fewer than {n_frames} frames.") raise ValueError(f"Input video contains fewer than {n_frames} frames.")
# Remove background and crop video frames
images_v0 = [] images_v0 = []
for t, image in enumerate(images):
for image in images:
image = ToTensor()(image).unsqueeze(0).to(device)
images_v0.append(image * 2.0 - 1.0)
return images_v0
def preprocess_video(input_path, remove_bg=False, n_frames=21, W=576, H=576, output_folder=None, image_frame_ratio = 0.917):
print(f"preprocess {input_path}")
if output_folder is None:
output_folder = os.path.dirname(input_path)
path = Path(input_path)
is_video_file = False
all_img_paths = []
if path.is_file():
if any([input_path.endswith(x) for x in [".gif", ".mp4"]]):
is_video_file = True
else:
raise ValueError("Path is not a valid video file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)[:n_frames]
elif "*" in input_path:
all_img_paths = sorted(glob(input_path))[:n_frames]
else:
raise ValueError
if is_video_file and input_path.endswith(".gif"):
images = read_gif(input_path, n_frames)[:n_frames]
elif is_video_file and input_path.endswith(".mp4"):
images = read_mp4(input_path, n_frames)[:n_frames]
else:
print(f"Loading {len(all_img_paths)} video frames...")
images = [Image.open(img_path) for img_path in all_img_paths]
if len(images) != n_frames:
raise ValueError(f"Input video contains {len(images)} frames, fewer than {n_frames} frames.")
# Remove background
for i, image in enumerate(images):
if remove_bg: if remove_bg:
if image.mode != "RGBA": if image.mode == "RGBA":
image.thumbnail([W, H], Image.Resampling.LANCZOS) pass
else:
# image.thumbnail([W, H], Image.Resampling.LANCZOS)
image = remove(image.convert("RGBA"), alpha_matting=True) image = remove(image.convert("RGBA"), alpha_matting=True)
images[i] = image
# Crop video frames, assume the object is already in the center of the image
white_thresh = 250
images_v0 = []
box_coord = [np.inf, np.inf, 0, 0]
for image in images:
image_arr = np.array(image) image_arr = np.array(image)
in_w, in_h = image_arr.shape[:2] in_w, in_h = image_arr.shape[:2]
original_center = (in_w // 2, in_h // 2)
if image.mode == "RGBA":
ret, mask = cv2.threshold( ret, mask = cv2.threshold(
np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY
) )
else:
# assume the input image has white background
ret, mask = cv2.threshold(
(np.array(image).mean(-1) <= white_thresh).astype(np.uint8) * 255, 0, 255, cv2.THRESH_BINARY
)
x, y, w, h = cv2.boundingRect(mask) x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h) box_coord[0] = min(box_coord[0], x)
if t == 0: box_coord[1] = min(box_coord[1], y)
box_coord[2] = max(box_coord[2], x + w)
box_coord[3] = max(box_coord[3], y + h)
box_square = max(original_center[0] - box_coord[0], original_center[1] - box_coord[1])
box_square = max(box_square, box_coord[2] - original_center[0])
box_square = max(box_square, box_coord[3] - original_center[1])
x, y, w, h = original_center[0] - box_square, original_center[1] - box_square, 2 * box_square, 2 * box_square
box_size = box_square * 2
for image in images:
if image.mode == "RGB":
image = image.convert("RGBA")
image_arr = np.array(image)
side_len = ( side_len = (
int(max_size / image_frame_ratio) int(box_size / image_frame_ratio)
if image_frame_ratio is not None if image_frame_ratio is not None
else in_w else in_w
) )
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2 center = side_len // 2
padded_image[ padded_image[
center - h // 2 : center - h // 2 + h, center - box_size // 2 : center - box_size // 2 + box_size,
center - w // 2 : center - w // 2 + w, center - box_size // 2 : center - box_size // 2 + box_size,
] = image_arr[y : y + h, x : x + w] ] = image_arr[x : x + w, y : y + h]
rgba = Image.fromarray(padded_image).resize((W, H), Image.LANCZOS) rgba = Image.fromarray(padded_image).resize((W, H), Image.LANCZOS)
# rgba = image.resize((W, H), Image.LANCZOS)
rgba_arr = np.array(rgba) / 255.0 rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
image = Image.fromarray((rgb * 255).astype(np.uint8)) image = (rgb * 255).astype(np.uint8)
else:
image = image.convert("RGB").resize((W, H), Image.LANCZOS)
image = ToTensor()(image).unsqueeze(0).to(device)
images_v0.append(image * 2.0 - 1.0)
return images_v0
images_v0.append(image)
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // 10
processed_file = os.path.join(output_folder, f"{base_count:06d}_process_input.mp4")
imageio.mimwrite(processed_file, images_v0, fps=10)
return processed_file
def sample_sv3d( def sample_sv3d(
image, image,
@@ -212,12 +282,14 @@ def sample_sv3d(
polar_rad: Optional[Union[float, List[float]]] = None, polar_rad: Optional[Union[float, List[float]]] = None,
azim_rad: Optional[List[float]] = None, azim_rad: Optional[List[float]] = None,
verbose: Optional[bool] = False, verbose: Optional[bool] = False,
sv3d_model=None,
): ):
""" """
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
""" """
if sv3d_model is None:
if version == "sv3d_u": if version == "sv3d_u":
model_config = "scripts/sampling/configs/sv3d_u.yaml" model_config = "scripts/sampling/configs/sv3d_u.yaml"
elif version == "sv3d_p": elif version == "sv3d_p":
@@ -232,6 +304,10 @@ def sample_sv3d(
num_steps, num_steps,
verbose, verbose,
) )
else:
model = sv3d_model
load_module_gpu(model)
H, W = image.shape[2:] H, W = image.shape[2:]
F = 8 F = 8
@@ -286,23 +362,30 @@ def sample_sv3d(
) )
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
unload_module_gpu(model.model)
unload_module_gpu(model.denoiser)
model.en_and_decode_n_samples_a_time = decoding_t model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z) samples_x = model.decode_first_stage(samples_z)
samples_x[-1:] = value_dict["cond_frames_without_noise"] samples_x[-1:] = value_dict["cond_frames_without_noise"]
samples = torch.clamp(samples_x, min=-1.0, max=1.0) samples = torch.clamp(samples_x, min=-1.0, max=1.0)
unload_module_gpu(model)
return samples return samples
def decode_latents(model, samples_z, timesteps): def decode_latents(model, samples_z, img_matrix, frame_indices, view_indices, timesteps):
load_module_gpu(model.first_stage_model) load_module_gpu(model.first_stage_model)
for t in frame_indices:
for v in view_indices:
if t != 0 and v != 0:
if isinstance(model.first_stage_model.decoder, VideoDecoder): if isinstance(model.first_stage_model.decoder, VideoDecoder):
samples_x = model.decode_first_stage(samples_z, timesteps=timesteps) samples_x = model.decode_first_stage(samples_z[t, v][None], timesteps=timesteps)
else: else:
samples_x = model.decode_first_stage(samples_z) samples_x = model.decode_first_stage(samples_z[t, v][None])
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
img_matrix[t][v] = samples * 2 - 1
unload_module_gpu(model.first_stage_model) unload_module_gpu(model.first_stage_model)
return samples return img_matrix
def init_embedder_options_no_st(keys, init_dict, prompt=None, negative_prompt=None): def init_embedder_options_no_st(keys, init_dict, prompt=None, negative_prompt=None):
@@ -604,6 +687,7 @@ def run_img2vid(
azim_rad=np.linspace(0, 360, 21 + 1)[1:], azim_rad=np.linspace(0, 360, 21 + 1)[1:],
cond_motion=None, cond_motion=None,
cond_view=None, cond_view=None,
decoding_t=None,
): ):
options = version_dict["options"] options = version_dict["options"]
H = version_dict["H"] H = version_dict["H"]
@@ -670,12 +754,53 @@ def run_img2vid(
force_uc_zero_embeddings=options.get("force_uc_zero_embeddings", None), force_uc_zero_embeddings=options.get("force_uc_zero_embeddings", None),
force_cond_zero_embeddings=options.get("force_cond_zero_embeddings", None), force_cond_zero_embeddings=options.get("force_cond_zero_embeddings", None),
return_latents=False, return_latents=False,
decoding_t=options.get("decoding_T", T), decoding_t=decoding_t,
) )
return samples return samples
def prepare_inputs(frame_indices, img_matrix, v0, view_indices, model, version_dict, seed, polars, azims):
load_module_gpu(model.conditioner)
forward_frame_indices = frame_indices.copy()
t0 = forward_frame_indices[0]
image = img_matrix[t0][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in forward_frame_indices], 0)
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
forward_inputs = prepare_sampling(
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
# backward sampling
backward_frame_indices = frame_indices[
::-1
].copy()
t0 = backward_frame_indices[0]
image = img_matrix[t0][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in backward_frame_indices], 0)
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
backward_inputs = prepare_sampling(
version_dict,
model,
image,
seed,
polars,
azims,
cond_motion,
cond_view,
)
unload_module_gpu(model.conditioner)
return forward_inputs, forward_frame_indices, backward_inputs, backward_frame_indices
def do_sample( def do_sample(
model, model,
sampler, sampler,
@@ -722,6 +847,8 @@ def do_sample(
force_cond_zero_embeddings=force_cond_zero_embeddings, force_cond_zero_embeddings=force_cond_zero_embeddings,
) )
unload_module_gpu(model.conditioner) unload_module_gpu(model.conditioner)
print("anchor_after_condition {}".format(torch.cuda.memory_reserved() / (1024 ** 3)))
# torch.cuda.empty_cache()
for k in c: for k in c:
if not k == "crossattn": if not k == "crossattn":
@@ -761,14 +888,15 @@ def do_sample(
return model.denoiser( return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs model.model, input, sigma, c, **additional_model_inputs
) )
load_module_gpu(model.model) load_module_gpu(model.model)
load_module_gpu(model.denoiser) load_module_gpu(model.denoiser)
samples_z = sampler(denoiser, randn, cond=c, uc=uc) samples_z = sampler(denoiser, randn, cond=c, uc=uc)
unload_module_gpu(model.model) unload_module_gpu(model.model)
unload_module_gpu(model.denoiser) unload_module_gpu(model.denoiser)
print("anchor_after_denoiser {}".format(torch.cuda.memory_reserved() / (1024 ** 3)))
# torch.cuda.empty_cache()
load_module_gpu(model.first_stage_model) load_module_gpu(model.first_stage_model)
model.en_and_decode_n_samples_a_time = decoding_t
if isinstance(model.first_stage_model.decoder, VideoDecoder): if isinstance(model.first_stage_model.decoder, VideoDecoder):
samples_x = model.decode_first_stage( samples_x = model.decode_first_stage(
samples_z, timesteps=default(decoding_t, T) samples_z, timesteps=default(decoding_t, T)
@@ -777,17 +905,16 @@ def do_sample(
samples_x = model.decode_first_stage(samples_z) samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
unload_module_gpu(model.first_stage_model) unload_module_gpu(model.first_stage_model)
if filter is not None: if filter is not None:
samples = filter(samples) samples = filter(samples)
if return_latents: if return_latents:
return samples, samples_z return samples, samples_z
# torch.cuda.empty_cache()
return samples return samples
def do_sample_per_step( def prepare_sampling_(
model, model,
sampler, sampler,
value_dict, value_dict,
@@ -797,8 +924,6 @@ def do_sample_per_step(
batch2model_input: List = None, batch2model_input: List = None,
T=None, T=None,
additional_batch_uc_fields=None, additional_batch_uc_fields=None,
step=None,
noisy_latents=None,
): ):
force_uc_zero_embeddings = default(force_uc_zero_embeddings, []) force_uc_zero_embeddings = default(force_uc_zero_embeddings, [])
batch2model_input = default(batch2model_input, []) batch2model_input = default(batch2model_input, [])
@@ -812,8 +937,6 @@ def do_sample_per_step(
num_samples = [num_samples, T] num_samples = [num_samples, T]
else: else:
num_samples = [num_samples] num_samples = [num_samples]
load_module_gpu(model.conditioner)
batch, batch_uc = get_batch( batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner), get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict, value_dict,
@@ -827,8 +950,7 @@ def do_sample_per_step(
force_uc_zero_embeddings=force_uc_zero_embeddings, force_uc_zero_embeddings=force_uc_zero_embeddings,
force_cond_zero_embeddings=force_cond_zero_embeddings, force_cond_zero_embeddings=force_cond_zero_embeddings,
) )
unload_module_gpu(model.conditioner) print("dense_after_condition {}".format(torch.cuda.memory_reserved() / (1024 ** 3)))
for k in c: for k in c:
if not k == "crossattn": if not k == "crossattn":
c[k], uc[k] = map( c[k], uc[k] = map(
@@ -859,7 +981,14 @@ def do_sample_per_step(
) )
else: else:
additional_model_inputs[k] = batch[k] additional_model_inputs[k] = batch[k]
return c, uc, additional_model_inputs
def do_sample_per_step(model, sampler, noisy_latents, c, uc, step, additional_model_inputs):
precision_scope = autocast
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
noisy_latents_scaled, s_in, sigmas, num_sigmas, _, _ = ( noisy_latents_scaled, s_in, sigmas, num_sigmas, _, _ = (
sampler.prepare_sampling_loop( sampler.prepare_sampling_loop(
noisy_latents.clone(), c, uc, sampler.num_steps noisy_latents.clone(), c, uc, sampler.num_steps
@@ -893,13 +1022,11 @@ def do_sample_per_step(
uc, uc,
gamma, gamma,
) )
unload_module_gpu(model.model) print("dense_after_sampling {}".format(torch.cuda.memory_reserved() / (1024 ** 3)))
unload_module_gpu(model.denoiser)
return samples_z return samples_z
def run_img2vid_per_step( def prepare_sampling(
version_dict, version_dict,
model, model,
image, image,
@@ -908,8 +1035,6 @@ def run_img2vid_per_step(
azim_rad=np.linspace(0, 360, 21 + 1)[1:], azim_rad=np.linspace(0, 360, 21 + 1)[1:],
cond_motion=None, cond_motion=None,
cond_view=None, cond_view=None,
step=None,
noisy_latents=None,
): ):
options = version_dict["options"] options = version_dict["options"]
H = version_dict["H"] H = version_dict["H"]
@@ -962,7 +1087,7 @@ def run_img2vid_per_step(
sampler, num_rows, num_cols = init_sampling_no_st(options=options) sampler, num_rows, num_cols = init_sampling_no_st(options=options)
num_samples = num_rows * num_cols num_samples = num_rows * num_cols
samples = do_sample_per_step( c, uc, additional_model_inputs = prepare_sampling_(
model, model,
sampler, sampler,
value_dict, value_dict,
@@ -971,11 +1096,9 @@ def run_img2vid_per_step(
force_cond_zero_embeddings=options.get("force_cond_zero_embeddings", None), force_cond_zero_embeddings=options.get("force_cond_zero_embeddings", None),
batch2model_input=["num_video_frames", "image_only_indicator"], batch2model_input=["num_video_frames", "image_only_indicator"],
T=T, T=T,
step=step,
noisy_latents=noisy_latents,
) )
return samples return c, uc, additional_model_inputs, sampler
def get_unique_embedder_keys_from_conditioner(conditioner): def get_unique_embedder_keys_from_conditioner(conditioner):

View File

@@ -1,6 +1,7 @@
N_TIME: 5 N_TIME: 5
N_VIEW: 8 N_VIEW: 8
N_FRAMES: 40 N_FRAMES: 40
ENCODE_N_A_TIME: 8
model: model:
target: sgm.models.diffusion.DiffusionEngine target: sgm.models.diffusion.DiffusionEngine
@@ -67,6 +68,7 @@ model:
is_ae: True is_ae: True
n_cond_frames: ${N_FRAMES} n_cond_frames: ${N_FRAMES}
n_copies: 1 n_copies: 1
en_and_decode_n_samples_a_time: ${ENCODE_N_A_TIME}
encoder_config: encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly target: sgm.models.autoencoder.AutoencoderKLModeOnly
params: params:
@@ -131,6 +133,7 @@ model:
is_ae: True is_ae: True
n_cond_frames: ${N_VIEW} n_cond_frames: ${N_VIEW}
n_copies: 1 n_copies: 1
en_and_decode_n_samples_a_time: ${ENCODE_N_A_TIME}
sigma_sampler_config: sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
@@ -141,6 +144,7 @@ model:
is_ae: True is_ae: True
n_cond_frames: ${N_TIME} n_cond_frames: ${N_TIME}
n_copies: 1 n_copies: 1
en_and_decode_n_samples_a_time: ${ENCODE_N_A_TIME}
encoder_config: encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly target: sgm.models.autoencoder.AutoencoderKLModeOnly
params: params:

View File

@@ -16,9 +16,12 @@ from scripts.demo.sv4d_helpers import (
initial_model_load, initial_model_load,
read_video, read_video,
run_img2vid, run_img2vid,
run_img2vid_per_step, prepare_sampling,
prepare_inputs,
do_sample_per_step,
sample_sv3d, sample_sv3d,
save_video, save_video,
preprocess_video,
) )
@@ -32,11 +35,11 @@ def sample(
motion_bucket_id: int = 127, motion_bucket_id: int = 127,
cond_aug: float = 1e-5, cond_aug: float = 1e-5,
seed: int = 23, seed: int = 23,
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda", device: str = "cuda",
elevations_deg: Optional[Union[float, List[float]]] = 10.0, elevations_deg: Optional[Union[float, List[float]]] = 10.0,
azimuths_deg: Optional[List[float]] = None, azimuths_deg: Optional[List[float]] = None,
image_frame_ratio: Optional[float] = None, image_frame_ratio: Optional[float] = 0.917,
verbose: Optional[bool] = False, verbose: Optional[bool] = False,
remove_bg: bool = False, remove_bg: bool = False,
): ):
@@ -89,15 +92,16 @@ def sample(
# Read input video frames i.e. images at view 0 # Read input video frames i.e. images at view 0
print(f"Reading {input_path}") print(f"Reading {input_path}")
images_v0 = read_video( processed_input_path = preprocess_video(
input_path, input_path,
remove_bg=remove_bg,
n_frames=n_frames, n_frames=n_frames,
W=W, W=W,
H=H, H=H,
remove_bg=remove_bg, output_folder=output_folder,
image_frame_ratio=image_frame_ratio, image_frame_ratio=image_frame_ratio,
device=device,
) )
images_v0 = read_video(processed_input_path, n_frames=n_frames, device=device)
# Get camera viewpoints # Get camera viewpoints
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int): if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
@@ -139,7 +143,7 @@ def sample(
for t in range(n_frames): for t in range(n_frames):
img_matrix[t][0] = images_v0[t] img_matrix[t][0] = images_v0[t]
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // 11 base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // 12
save_video( save_video(
os.path.join(output_folder, f"{base_count:06d}_t000.mp4"), os.path.join(output_folder, f"{base_count:06d}_t000.mp4"),
img_matrix[0], img_matrix[0],
@@ -171,7 +175,7 @@ def sample(
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten() azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2) azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
samples = run_img2vid( samples = run_img2vid(
version_dict, model, image, seed, polars, azims, cond_motion, cond_view version_dict, model, image, seed, polars, azims, cond_motion, cond_view, decoding_t
) )
samples = samples.view(T, V, 3, H, W) samples = samples.view(T, V, 3, H, W)
for i, t in enumerate(frame_indices): for i, t in enumerate(frame_indices):
@@ -185,40 +189,48 @@ def sample(
frame_indices = t0 + np.arange(T) frame_indices = t0 + np.arange(T)
print(f"Sampling dense frames {frame_indices}") print(f"Sampling dense frames {frame_indices}")
latent_matrix = torch.randn(n_frames, n_views, C, H // F, W // F).to("cuda") latent_matrix = torch.randn(n_frames, n_views, C, H // F, W // F).to("cuda")
for step in tqdm(range(num_steps)):
frame_indices = frame_indices[
::-1
].copy() # alternate between forward and backward conditioning
t0 = frame_indices[0]
image = img_matrix[t0][v0]
cond_motion = torch.cat([img_matrix[t][v0] for t in frame_indices], 0)
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten() polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten() azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2) azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
noisy_latents = latent_matrix[frame_indices][:, view_indices].flatten(0, 1)
samples = run_img2vid_per_step( # alternate between forward and backward conditioning
version_dict, forward_inputs, forward_frame_indices, backward_inputs, backward_frame_indices = prepare_inputs(
frame_indices,
img_matrix,
v0,
view_indices,
model, model,
image, version_dict,
seed, seed,
polars, polars,
azims, azims
cond_motion, )
cond_view,
step, for step in tqdm(range(num_steps)):
if step % 2 == 1:
c, uc, additional_model_inputs, sampler = forward_inputs
frame_indices = forward_frame_indices
else:
c, uc, additional_model_inputs, sampler = backward_inputs
frame_indices = backward_frame_indices
noisy_latents = latent_matrix[frame_indices][:, view_indices].flatten(0, 1)
samples = do_sample_per_step(
model,
sampler,
noisy_latents, noisy_latents,
c,
uc,
step,
additional_model_inputs,
) )
samples = samples.view(T, V, C, H // F, W // F) samples = samples.view(T, V, C, H // F, W // F)
for i, t in enumerate(frame_indices): for i, t in enumerate(frame_indices):
for j, v in enumerate(view_indices): for j, v in enumerate(view_indices):
latent_matrix[t, v] = samples[i, j] latent_matrix[t, v] = samples[i, j]
for t in frame_indices: img_matrix = decode_latents(model, latent_matrix, img_matrix, frame_indices, view_indices, T)
for v in view_indices:
if t != 0 and v != 0:
img = decode_latents(model, latent_matrix[t, v][None], T)
img_matrix[t][v] = img * 2 - 1
# Save output videos # Save output videos
for v in view_indices: for v in view_indices: