Watermark encoder expects images in BGR channel order (matching cv2 imread). This fix reduces the watermark artifacts.

This commit is contained in:
pharmapsychotic
2023-07-05 12:05:14 -05:00
parent ae18ba3e87
commit 5df4d9893c
2 changed files with 4 additions and 5 deletions

View File

@@ -83,7 +83,7 @@ class GetWatermarkMatch:
def __call__(self, x: np.ndarray) -> np.ndarray:
"""
Detects the number of matching bits the predefined watermark with one
or multiple images. Images should be in cv2 format, e.g. h x w x c.
or multiple images. Images should be in cv2 format, e.g. h x w x c BGR.
Args:
x: ([B], h w, c) in range [0, 255]
@@ -94,7 +94,6 @@ class GetWatermarkMatch:
squeeze = len(x.shape) == 3
if squeeze:
x = x[None, ...]
x = np.flip(x, axis=-1)
bs = x.shape[0]
detected = np.empty((bs, self.num_bits), dtype=bool)

View File

@@ -43,19 +43,19 @@ class WatermarkEmbedder:
Returns:
same as input but watermarked
"""
# watermarking libary expects input as cv2 format
# watermarking libary expects input as cv2 BGR format
squeeze = len(image.shape) == 4
if squeeze:
image = image[None, ...]
n = image.shape[0]
image_np = rearrange(
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c"
).numpy()
).numpy()[:,:,:,::-1]
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
for k in range(image_np.shape[0]):
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
image = torch.from_numpy(
rearrange(image_np, "(n b) h w c -> n b c h w", n=n)
rearrange(image_np[:,:,:,::-1], "(n b) h w c -> n b c h w", n=n)
).to(image.device)
image = torch.clamp(image / 255, min=0.0, max=1.0)
if squeeze: