mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 22:34:22 +01:00
Adding a gradio demo of SVD to be run locally (#144)
* Adding a gradio demo of SVD to be run locally * Update gradio_app.py * Create svd_xt_1_1.yaml * Update pt2.txt --------- Co-authored-by: Sumith Kulal <sumith1896@gmail.com>
This commit is contained in:
@@ -24,6 +24,7 @@
|
||||
We use the standard image encoder from SD 2.1, but replace the decoder with a temporally-aware `deflickering decoder`.
|
||||
- [SVD-XT](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt): Same architecture as `SVD` but finetuned
|
||||
for 25 frame generation.
|
||||
- You can run the community-build gradio demo locally by running `python -m scripts.demo.gradio_app`.
|
||||
- We provide a streamlit demo `scripts/demo/video_sampling.py` and a standalone python script `scripts/sampling/simple_video_sample.py` for inference of both models.
|
||||
- Alongside the model, we release a [technical report](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets).
|
||||
|
||||
|
||||
@@ -37,4 +37,5 @@ wandb>=0.15.6
|
||||
webdataset>=0.2.33
|
||||
wheel>=0.41.0
|
||||
xformers>=0.0.20
|
||||
gradio
|
||||
streamlit-keyup==0.2.0
|
||||
|
||||
283
scripts/demo/gradio_app.py
Normal file
283
scripts/demo/gradio_app.py
Normal file
@@ -0,0 +1,283 @@
|
||||
# Adding this at the very top of app.py to make 'generative-models' directory discoverable
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), 'generative-models'))
|
||||
|
||||
import math
|
||||
from glob import glob
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
from fire import Fire
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
||||
DeepFloydDataFiltering
|
||||
from sgm.inference.helpers import embed_watermark
|
||||
from sgm.util import default, instantiate_from_config
|
||||
from scripts.sampling.simple_video_sample import load_model, get_unique_embedder_keys_from_conditioner, get_batch
|
||||
|
||||
import gradio as gr
|
||||
import uuid
|
||||
import random
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
# To download all svd models
|
||||
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
||||
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid", filename="svd.safetensors", local_dir="checkpoints")
|
||||
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir="checkpoints")
|
||||
|
||||
|
||||
# Define the repo, local directory and filename
|
||||
repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1" # replace with "stabilityai/stable-video-diffusion-img2vid-xt" or "stabilityai/stable-video-diffusion-img2vid" for other models
|
||||
filename = "svd_xt_1_1.safetensors" # replace with "svd_xt.safetensors" or "svd.safetensors" for other models
|
||||
local_dir = "checkpoints"
|
||||
local_file_path = os.path.join(local_dir, filename)
|
||||
|
||||
# Check if the file already exists
|
||||
if not os.path.exists(local_file_path):
|
||||
# If the file doesn't exist, download it
|
||||
hf_hub_download(
|
||||
repo_id=repo_id,
|
||||
filename=filename,
|
||||
local_dir=local_dir
|
||||
)
|
||||
print("File downloaded.")
|
||||
else:
|
||||
print("File already exists. No need to download.")
|
||||
|
||||
|
||||
version = "svd_xt_1_1" # replace with 'svd_xt' or 'svd' for other models
|
||||
device = "cuda"
|
||||
max_64_bit_int = 2**63 - 1
|
||||
|
||||
if version == "svd_xt_1_1":
|
||||
num_frames = 25
|
||||
num_steps = 30
|
||||
model_config = "scripts/sampling/configs/svd_xt_1_1.yaml"
|
||||
else:
|
||||
raise ValueError(f"Version {version} does not exist.")
|
||||
|
||||
model, filter = load_model(
|
||||
model_config,
|
||||
device,
|
||||
num_frames,
|
||||
num_steps,
|
||||
)
|
||||
|
||||
def sample(
|
||||
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
||||
seed: Optional[int] = None,
|
||||
randomize_seed: bool = True,
|
||||
motion_bucket_id: int = 127,
|
||||
fps_id: int = 6,
|
||||
version: str = "svd_xt_1_1",
|
||||
cond_aug: float = 0.02,
|
||||
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
device: str = "cuda",
|
||||
output_folder: str = "outputs",
|
||||
progress=gr.Progress(track_tqdm=True)
|
||||
):
|
||||
"""
|
||||
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
||||
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
||||
"""
|
||||
fps_id = int(fps_id ) #casting float slider values to int)
|
||||
if(randomize_seed):
|
||||
seed = random.randint(0, max_64_bit_int)
|
||||
|
||||
torch.manual_seed(seed)
|
||||
|
||||
path = Path(input_path)
|
||||
all_img_paths = []
|
||||
if path.is_file():
|
||||
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
||||
all_img_paths = [input_path]
|
||||
else:
|
||||
raise ValueError("Path is not valid image file.")
|
||||
elif path.is_dir():
|
||||
all_img_paths = sorted(
|
||||
[
|
||||
f
|
||||
for f in path.iterdir()
|
||||
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
||||
]
|
||||
)
|
||||
if len(all_img_paths) == 0:
|
||||
raise ValueError("Folder does not contain any images.")
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
for input_img_path in all_img_paths:
|
||||
with Image.open(input_img_path) as image:
|
||||
if image.mode == "RGBA":
|
||||
image = image.convert("RGB")
|
||||
w, h = image.size
|
||||
|
||||
if h % 64 != 0 or w % 64 != 0:
|
||||
width, height = map(lambda x: x - x % 64, (w, h))
|
||||
image = image.resize((width, height))
|
||||
print(
|
||||
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
||||
)
|
||||
|
||||
image = ToTensor()(image)
|
||||
image = image * 2.0 - 1.0
|
||||
|
||||
image = image.unsqueeze(0).to(device)
|
||||
H, W = image.shape[2:]
|
||||
assert image.shape[1] == 3
|
||||
F = 8
|
||||
C = 4
|
||||
shape = (num_frames, C, H // F, W // F)
|
||||
if (H, W) != (576, 1024):
|
||||
print(
|
||||
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
||||
)
|
||||
if motion_bucket_id > 255:
|
||||
print(
|
||||
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
||||
)
|
||||
|
||||
if fps_id < 5:
|
||||
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
||||
|
||||
if fps_id > 30:
|
||||
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
||||
|
||||
value_dict = {}
|
||||
value_dict["motion_bucket_id"] = motion_bucket_id
|
||||
value_dict["fps_id"] = fps_id
|
||||
value_dict["cond_aug"] = cond_aug
|
||||
value_dict["cond_frames_without_noise"] = image
|
||||
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
||||
value_dict["cond_aug"] = cond_aug
|
||||
|
||||
with torch.no_grad():
|
||||
with torch.autocast(device):
|
||||
batch, batch_uc = get_batch(
|
||||
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
||||
value_dict,
|
||||
[1, num_frames],
|
||||
T=num_frames,
|
||||
device=device,
|
||||
)
|
||||
c, uc = model.conditioner.get_unconditional_conditioning(
|
||||
batch,
|
||||
batch_uc=batch_uc,
|
||||
force_uc_zero_embeddings=[
|
||||
"cond_frames",
|
||||
"cond_frames_without_noise",
|
||||
],
|
||||
)
|
||||
|
||||
for k in ["crossattn", "concat"]:
|
||||
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
||||
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
||||
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
||||
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
||||
|
||||
randn = torch.randn(shape, device=device)
|
||||
|
||||
additional_model_inputs = {}
|
||||
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
||||
2, num_frames
|
||||
).to(device)
|
||||
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
||||
|
||||
def denoiser(input, sigma, c):
|
||||
return model.denoiser(
|
||||
model.model, input, sigma, c, **additional_model_inputs
|
||||
)
|
||||
|
||||
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
||||
model.en_and_decode_n_samples_a_time = decoding_t
|
||||
samples_x = model.decode_first_stage(samples_z)
|
||||
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
||||
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
||||
writer = cv2.VideoWriter(
|
||||
video_path,
|
||||
cv2.VideoWriter_fourcc(*"mp4v"),
|
||||
fps_id + 1,
|
||||
(samples.shape[-1], samples.shape[-2]),
|
||||
)
|
||||
|
||||
samples = embed_watermark(samples)
|
||||
samples = filter(samples)
|
||||
vid = (
|
||||
(rearrange(samples, "t c h w -> t h w c") * 255)
|
||||
.cpu()
|
||||
.numpy()
|
||||
.astype(np.uint8)
|
||||
)
|
||||
for frame in vid:
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
writer.write(frame)
|
||||
writer.release()
|
||||
|
||||
return video_path, seed
|
||||
|
||||
|
||||
def resize_image(image_path, output_size=(1024, 576)):
|
||||
image = Image.open(image_path)
|
||||
# Calculate aspect ratios
|
||||
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
||||
image_aspect = image.width / image.height # Aspect ratio of the original image
|
||||
|
||||
# Resize then crop if the original image is larger
|
||||
if image_aspect > target_aspect:
|
||||
# Resize the image to match the target height, maintaining aspect ratio
|
||||
new_height = output_size[1]
|
||||
new_width = int(new_height * image_aspect)
|
||||
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
||||
# Calculate coordinates for cropping
|
||||
left = (new_width - output_size[0]) / 2
|
||||
top = 0
|
||||
right = (new_width + output_size[0]) / 2
|
||||
bottom = output_size[1]
|
||||
else:
|
||||
# Resize the image to match the target width, maintaining aspect ratio
|
||||
new_width = output_size[0]
|
||||
new_height = int(new_width / image_aspect)
|
||||
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
||||
# Calculate coordinates for cropping
|
||||
left = 0
|
||||
top = (new_height - output_size[1]) / 2
|
||||
right = output_size[0]
|
||||
bottom = (new_height + output_size[1]) / 2
|
||||
|
||||
# Crop the image
|
||||
cropped_image = resized_image.crop((left, top, right, bottom))
|
||||
|
||||
return cropped_image
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
|
||||
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact).
|
||||
''')
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
image = gr.Image(label="Upload your image", type="filepath")
|
||||
generate_btn = gr.Button("Generate")
|
||||
video = gr.Video()
|
||||
with gr.Accordion("Advanced options", open=False):
|
||||
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
||||
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
||||
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
||||
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
||||
|
||||
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
||||
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.queue(max_size=20)
|
||||
demo.launch(share=True)
|
||||
146
scripts/sampling/configs/svd_xt_1_1.yaml
Normal file
146
scripts/sampling/configs/svd_xt_1_1.yaml
Normal file
@@ -0,0 +1,146 @@
|
||||
model:
|
||||
target: sgm.models.diffusion.DiffusionEngine
|
||||
params:
|
||||
scale_factor: 0.18215
|
||||
disable_first_stage_autocast: True
|
||||
ckpt_path: checkpoints/svd_xt_1_1.safetensors
|
||||
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
||||
params:
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
||||
|
||||
network_config:
|
||||
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
||||
params:
|
||||
adm_in_channels: 768
|
||||
num_classes: sequential
|
||||
use_checkpoint: True
|
||||
in_channels: 8
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [4, 2, 1]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [1, 2, 4, 4]
|
||||
num_head_channels: 64
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
spatial_transformer_attn_type: softmax-xformers
|
||||
extra_ff_mix_layer: True
|
||||
use_spatial_context: True
|
||||
merge_strategy: learned_with_images
|
||||
video_kernel_size: [3, 1, 1]
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
- is_trainable: False
|
||||
input_key: cond_frames_without_noise
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
||||
params:
|
||||
n_cond_frames: 1
|
||||
n_copies: 1
|
||||
open_clip_embedding_config:
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
|
||||
- input_key: fps_id
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256
|
||||
|
||||
- input_key: motion_bucket_id
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256
|
||||
|
||||
- input_key: cond_frames
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
params:
|
||||
disable_encoder_autocast: True
|
||||
n_cond_frames: 1
|
||||
n_copies: 1
|
||||
is_ae: True
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_type: vanilla-xformers
|
||||
double_z: True
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
- input_key: cond_aug
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.AutoencodingEngine
|
||||
params:
|
||||
loss_config:
|
||||
target: torch.nn.Identity
|
||||
regularizer_config:
|
||||
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
||||
encoder_config:
|
||||
target: sgm.modules.diffusionmodules.model.Encoder
|
||||
params:
|
||||
attn_type: vanilla
|
||||
double_z: True
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
decoder_config:
|
||||
target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
|
||||
params:
|
||||
attn_type: vanilla
|
||||
double_z: True
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
video_kernel_size: [3, 1, 1]
|
||||
|
||||
sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
||||
params:
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
||||
params:
|
||||
sigma_max: 700.0
|
||||
|
||||
guider_config:
|
||||
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
|
||||
params:
|
||||
max_scale: 3.0
|
||||
min_scale: 1.5
|
||||
Reference in New Issue
Block a user