mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 22:34:22 +01:00
soon is now
This commit is contained in:
69
sgm/modules/diffusionmodules/loss.py
Normal file
69
sgm/modules/diffusionmodules/loss.py
Normal file
@@ -0,0 +1,69 @@
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from omegaconf import ListConfig
|
||||
from taming.modules.losses.lpips import LPIPS
|
||||
|
||||
from ...util import append_dims, instantiate_from_config
|
||||
|
||||
|
||||
class StandardDiffusionLoss(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
sigma_sampler_config,
|
||||
type="l2",
|
||||
offset_noise_level=0.0,
|
||||
batch2model_keys: Optional[Union[str, List[str], ListConfig]] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
assert type in ["l2", "l1", "lpips"]
|
||||
|
||||
self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
|
||||
|
||||
self.type = type
|
||||
self.offset_noise_level = offset_noise_level
|
||||
|
||||
if type == "lpips":
|
||||
self.lpips = LPIPS().eval()
|
||||
|
||||
if not batch2model_keys:
|
||||
batch2model_keys = []
|
||||
|
||||
if isinstance(batch2model_keys, str):
|
||||
batch2model_keys = [batch2model_keys]
|
||||
|
||||
self.batch2model_keys = set(batch2model_keys)
|
||||
|
||||
def __call__(self, network, denoiser, conditioner, input, batch):
|
||||
cond = conditioner(batch)
|
||||
additional_model_inputs = {
|
||||
key: batch[key] for key in self.batch2model_keys.intersection(batch)
|
||||
}
|
||||
|
||||
sigmas = self.sigma_sampler(input.shape[0]).to(input.device)
|
||||
noise = torch.randn_like(input)
|
||||
if self.offset_noise_level > 0.0:
|
||||
noise = noise + self.offset_noise_level * append_dims(
|
||||
torch.randn(input.shape[0], device=input.device), input.ndim
|
||||
)
|
||||
noised_input = input + noise * append_dims(sigmas, input.ndim)
|
||||
model_output = denoiser(
|
||||
network, noised_input, sigmas, cond, **additional_model_inputs
|
||||
)
|
||||
w = append_dims(denoiser.w(sigmas), input.ndim)
|
||||
return self.get_loss(model_output, input, w)
|
||||
|
||||
def get_loss(self, model_output, target, w):
|
||||
if self.type == "l2":
|
||||
return torch.mean(
|
||||
(w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
|
||||
)
|
||||
elif self.type == "l1":
|
||||
return torch.mean(
|
||||
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
|
||||
)
|
||||
elif self.type == "lpips":
|
||||
loss = self.lpips(model_output, target).reshape(-1)
|
||||
return loss
|
||||
Reference in New Issue
Block a user