mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 22:34:22 +01:00
Stable Video Diffusion
This commit is contained in:
493
sgm/modules/diffusionmodules/video_model.py
Normal file
493
sgm/modules/diffusionmodules/video_model.py
Normal file
@@ -0,0 +1,493 @@
|
||||
from functools import partial
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from ...modules.diffusionmodules.openaimodel import *
|
||||
from ...modules.video_attention import SpatialVideoTransformer
|
||||
from ...util import default
|
||||
from .util import AlphaBlender
|
||||
|
||||
|
||||
class VideoResBlock(ResBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
emb_channels: int,
|
||||
dropout: float,
|
||||
video_kernel_size: Union[int, List[int]] = 3,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
out_channels: Optional[int] = None,
|
||||
use_conv: bool = False,
|
||||
use_scale_shift_norm: bool = False,
|
||||
dims: int = 2,
|
||||
use_checkpoint: bool = False,
|
||||
up: bool = False,
|
||||
down: bool = False,
|
||||
):
|
||||
super().__init__(
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=out_channels,
|
||||
use_conv=use_conv,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
up=up,
|
||||
down=down,
|
||||
)
|
||||
|
||||
self.time_stack = ResBlock(
|
||||
default(out_channels, channels),
|
||||
emb_channels,
|
||||
dropout=dropout,
|
||||
dims=3,
|
||||
out_channels=default(out_channels, channels),
|
||||
use_scale_shift_norm=False,
|
||||
use_conv=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=video_kernel_size,
|
||||
use_checkpoint=use_checkpoint,
|
||||
exchange_temb_dims=True,
|
||||
)
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
rearrange_pattern="b t -> b 1 t 1 1",
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
emb: th.Tensor,
|
||||
num_video_frames: int,
|
||||
image_only_indicator: Optional[th.Tensor] = None,
|
||||
) -> th.Tensor:
|
||||
x = super().forward(x, emb)
|
||||
|
||||
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
|
||||
x = self.time_stack(
|
||||
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
|
||||
)
|
||||
x = self.time_mixer(
|
||||
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
|
||||
)
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
return x
|
||||
|
||||
|
||||
class VideoUNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
model_channels: int,
|
||||
out_channels: int,
|
||||
num_res_blocks: int,
|
||||
attention_resolutions: int,
|
||||
dropout: float = 0.0,
|
||||
channel_mult: List[int] = (1, 2, 4, 8),
|
||||
conv_resample: bool = True,
|
||||
dims: int = 2,
|
||||
num_classes: Optional[int] = None,
|
||||
use_checkpoint: bool = False,
|
||||
num_heads: int = -1,
|
||||
num_head_channels: int = -1,
|
||||
num_heads_upsample: int = -1,
|
||||
use_scale_shift_norm: bool = False,
|
||||
resblock_updown: bool = False,
|
||||
transformer_depth: Union[List[int], int] = 1,
|
||||
transformer_depth_middle: Optional[int] = None,
|
||||
context_dim: Optional[int] = None,
|
||||
time_downup: bool = False,
|
||||
time_context_dim: Optional[int] = None,
|
||||
extra_ff_mix_layer: bool = False,
|
||||
use_spatial_context: bool = False,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
spatial_transformer_attn_type: str = "softmax",
|
||||
video_kernel_size: Union[int, List[int]] = 3,
|
||||
use_linear_in_transformer: bool = False,
|
||||
adm_in_channels: Optional[int] = None,
|
||||
disable_temporal_crossattention: bool = False,
|
||||
max_ddpm_temb_period: int = 10000,
|
||||
):
|
||||
super().__init__()
|
||||
assert context_dim is not None
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
transformer_depth_middle = default(
|
||||
transformer_depth_middle, transformer_depth[-1]
|
||||
)
|
||||
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
elif self.num_classes == "timestep":
|
||||
self.label_emb = nn.Sequential(
|
||||
Timestep(model_channels),
|
||||
nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
),
|
||||
)
|
||||
|
||||
elif self.num_classes == "sequential":
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
linear(adm_in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
def get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=1,
|
||||
context_dim=None,
|
||||
use_checkpoint=False,
|
||||
disabled_sa=False,
|
||||
):
|
||||
return SpatialVideoTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=depth,
|
||||
context_dim=context_dim,
|
||||
time_context_dim=time_context_dim,
|
||||
dropout=dropout,
|
||||
ff_in=extra_ff_mix_layer,
|
||||
use_spatial_context=use_spatial_context,
|
||||
merge_strategy=merge_strategy,
|
||||
merge_factor=merge_factor,
|
||||
checkpoint=use_checkpoint,
|
||||
use_linear=use_linear_in_transformer,
|
||||
attn_mode=spatial_transformer_attn_type,
|
||||
disable_self_attn=disabled_sa,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
max_time_embed_period=max_ddpm_temb_period,
|
||||
)
|
||||
|
||||
def get_resblock(
|
||||
merge_factor,
|
||||
merge_strategy,
|
||||
video_kernel_size,
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_ch,
|
||||
dims,
|
||||
use_checkpoint,
|
||||
use_scale_shift_norm,
|
||||
down=False,
|
||||
up=False,
|
||||
):
|
||||
return VideoResBlock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
channels=ch,
|
||||
emb_channels=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=down,
|
||||
up=up,
|
||||
)
|
||||
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for _ in range(num_res_blocks):
|
||||
layers = [
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
|
||||
layers.append(
|
||||
get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth[level],
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=use_checkpoint,
|
||||
disabled_sa=False,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
ds *= 2
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch,
|
||||
conv_resample,
|
||||
dims=dims,
|
||||
out_channels=out_ch,
|
||||
third_down=time_downup,
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
|
||||
self._feature_size += ch
|
||||
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
out_ch=None,
|
||||
dropout=dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth_middle,
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=use_checkpoint,
|
||||
),
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
out_ch=None,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||
for i in range(num_res_blocks + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch + ich,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=model_channels * mult,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
|
||||
layers.append(
|
||||
get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth[level],
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=use_checkpoint,
|
||||
disabled_sa=False,
|
||||
)
|
||||
)
|
||||
if level and i == num_res_blocks:
|
||||
out_ch = ch
|
||||
ds //= 2
|
||||
layers.append(
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(
|
||||
ch,
|
||||
conv_resample,
|
||||
dims=dims,
|
||||
out_channels=out_ch,
|
||||
third_up=time_downup,
|
||||
)
|
||||
)
|
||||
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
timesteps: th.Tensor,
|
||||
context: Optional[th.Tensor] = None,
|
||||
y: Optional[th.Tensor] = None,
|
||||
time_context: Optional[th.Tensor] = None,
|
||||
num_video_frames: Optional[int] = None,
|
||||
image_only_indicator: Optional[th.Tensor] = None,
|
||||
):
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional -> no, relax this TODO"
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x
|
||||
for module in self.input_blocks:
|
||||
h = module(
|
||||
h,
|
||||
emb,
|
||||
context=context,
|
||||
image_only_indicator=image_only_indicator,
|
||||
time_context=time_context,
|
||||
num_video_frames=num_video_frames,
|
||||
)
|
||||
hs.append(h)
|
||||
h = self.middle_block(
|
||||
h,
|
||||
emb,
|
||||
context=context,
|
||||
image_only_indicator=image_only_indicator,
|
||||
time_context=time_context,
|
||||
num_video_frames=num_video_frames,
|
||||
)
|
||||
for module in self.output_blocks:
|
||||
h = th.cat([h, hs.pop()], dim=1)
|
||||
h = module(
|
||||
h,
|
||||
emb,
|
||||
context=context,
|
||||
image_only_indicator=image_only_indicator,
|
||||
time_context=time_context,
|
||||
num_video_frames=num_video_frames,
|
||||
)
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
Reference in New Issue
Block a user