Stable Video Diffusion

This commit is contained in:
Tim Dockhorn
2023-11-21 10:40:21 -08:00
parent 477d8b9a77
commit 059d8e9cd9
59 changed files with 5463 additions and 1691 deletions

View File

@@ -1,31 +1,33 @@
from functools import partial
import logging
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Tuple, Union
import torch
from einops import rearrange, repeat
from ...util import default, instantiate_from_config
from ...util import append_dims, default
logpy = logging.getLogger(__name__)
class VanillaCFG:
"""
implements parallelized CFG
"""
class Guider(ABC):
@abstractmethod
def __call__(self, x: torch.Tensor, sigma: float) -> torch.Tensor:
pass
def __init__(self, scale, dyn_thresh_config=None):
scale_schedule = lambda scale, sigma: scale # independent of step
self.scale_schedule = partial(scale_schedule, scale)
self.dyn_thresh = instantiate_from_config(
default(
dyn_thresh_config,
{
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
},
)
)
def prepare_inputs(
self, x: torch.Tensor, s: float, c: Dict, uc: Dict
) -> Tuple[torch.Tensor, float, Dict]:
pass
def __call__(self, x, sigma):
class VanillaCFG(Guider):
def __init__(self, scale: float):
self.scale = scale
def __call__(self, x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
x_u, x_c = x.chunk(2)
scale_value = self.scale_schedule(sigma)
x_pred = self.dyn_thresh(x_u, x_c, scale_value)
x_pred = x_u + self.scale * (x_c - x_u)
return x_pred
def prepare_inputs(self, x, s, c, uc):
@@ -40,14 +42,58 @@ class VanillaCFG:
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
class IdentityGuider:
def __call__(self, x, sigma):
class IdentityGuider(Guider):
def __call__(self, x: torch.Tensor, sigma: float) -> torch.Tensor:
return x
def prepare_inputs(self, x, s, c, uc):
def prepare_inputs(
self, x: torch.Tensor, s: float, c: Dict, uc: Dict
) -> Tuple[torch.Tensor, float, Dict]:
c_out = dict()
for k in c:
c_out[k] = c[k]
return x, s, c_out
class LinearPredictionGuider(Guider):
def __init__(
self,
max_scale: float,
num_frames: int,
min_scale: float = 1.0,
additional_cond_keys: Optional[Union[List[str], str]] = None,
):
self.min_scale = min_scale
self.max_scale = max_scale
self.num_frames = num_frames
self.scale = torch.linspace(min_scale, max_scale, num_frames).unsqueeze(0)
additional_cond_keys = default(additional_cond_keys, [])
if isinstance(additional_cond_keys, str):
additional_cond_keys = [additional_cond_keys]
self.additional_cond_keys = additional_cond_keys
def __call__(self, x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
x_u, x_c = x.chunk(2)
x_u = rearrange(x_u, "(b t) ... -> b t ...", t=self.num_frames)
x_c = rearrange(x_c, "(b t) ... -> b t ...", t=self.num_frames)
scale = repeat(self.scale, "1 t -> b t", b=x_u.shape[0])
scale = append_dims(scale, x_u.ndim).to(x_u.device)
return rearrange(x_u + scale * (x_c - x_u), "b t ... -> (b t) ...")
def prepare_inputs(
self, x: torch.Tensor, s: torch.Tensor, c: dict, uc: dict
) -> Tuple[torch.Tensor, torch.Tensor, dict]:
c_out = dict()
for k in c:
if k in ["vector", "crossattn", "concat"] + self.additional_cond_keys:
c_out[k] = torch.cat((uc[k], c[k]), 0)
else:
assert c[k] == uc[k]
c_out[k] = c[k]
return torch.cat([x] * 2), torch.cat([s] * 2), c_out