mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 22:34:22 +01:00
Stable Video Diffusion
This commit is contained in:
@@ -1,11 +1,24 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class DenoiserScaling(ABC):
|
||||
@abstractmethod
|
||||
def __call__(
|
||||
self, sigma: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
pass
|
||||
|
||||
|
||||
class EDMScaling:
|
||||
def __init__(self, sigma_data=0.5):
|
||||
def __init__(self, sigma_data: float = 0.5):
|
||||
self.sigma_data = sigma_data
|
||||
|
||||
def __call__(self, sigma):
|
||||
def __call__(
|
||||
self, sigma: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2)
|
||||
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2) ** 0.5
|
||||
c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5
|
||||
@@ -14,7 +27,9 @@ class EDMScaling:
|
||||
|
||||
|
||||
class EpsScaling:
|
||||
def __call__(self, sigma):
|
||||
def __call__(
|
||||
self, sigma: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
c_skip = torch.ones_like(sigma, device=sigma.device)
|
||||
c_out = -sigma
|
||||
c_in = 1 / (sigma**2 + 1.0) ** 0.5
|
||||
@@ -23,9 +38,22 @@ class EpsScaling:
|
||||
|
||||
|
||||
class VScaling:
|
||||
def __call__(self, sigma):
|
||||
def __call__(
|
||||
self, sigma: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
c_skip = 1.0 / (sigma**2 + 1.0)
|
||||
c_out = -sigma / (sigma**2 + 1.0) ** 0.5
|
||||
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5
|
||||
c_noise = sigma.clone()
|
||||
return c_skip, c_out, c_in, c_noise
|
||||
|
||||
|
||||
class VScalingWithEDMcNoise(DenoiserScaling):
|
||||
def __call__(
|
||||
self, sigma: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
c_skip = 1.0 / (sigma**2 + 1.0)
|
||||
c_out = -sigma / (sigma**2 + 1.0) ** 0.5
|
||||
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5
|
||||
c_noise = 0.25 * sigma.log()
|
||||
return c_skip, c_out, c_in, c_noise
|
||||
|
||||
Reference in New Issue
Block a user