Stable Video Diffusion

This commit is contained in:
Tim Dockhorn
2023-11-21 10:40:21 -08:00
parent 477d8b9a77
commit 059d8e9cd9
59 changed files with 5463 additions and 1691 deletions

View File

@@ -0,0 +1,146 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.18215
disable_first_stage_autocast: True
ckpt_path: checkpoints/svd.safetensors
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.Denoiser
params:
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
network_config:
target: sgm.modules.diffusionmodules.video_model.VideoUNet
params:
adm_in_channels: 768
num_classes: sequential
use_checkpoint: True
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2, 1]
num_res_blocks: 2
channel_mult: [1, 2, 4, 4]
num_head_channels: 64
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
spatial_transformer_attn_type: softmax-xformers
extra_ff_mix_layer: True
use_spatial_context: True
merge_strategy: learned_with_images
video_kernel_size: [3, 1, 1]
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: False
input_key: cond_frames_without_noise
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
params:
n_cond_frames: 1
n_copies: 1
open_clip_embedding_config:
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
params:
freeze: True
- input_key: fps_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: motion_bucket_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: cond_frames
is_trainable: False
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
params:
disable_encoder_autocast: True
n_cond_frames: 1
n_copies: 1
is_ae: True
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
- input_key: cond_aug
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
first_stage_config:
target: sgm.models.autoencoder.AutoencodingEngine
params:
loss_config:
target: torch.nn.Identity
regularizer_config:
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: sgm.modules.diffusionmodules.model.Encoder
params:
attn_type: vanilla
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
decoder_config:
target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
params:
attn_type: vanilla
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
video_kernel_size: [3, 1, 1]
sampler_config:
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
params:
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
params:
sigma_max: 700.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
params:
max_scale: 2.5
min_scale: 1.0

View File

@@ -0,0 +1,129 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.18215
disable_first_stage_autocast: True
ckpt_path: checkpoints/svd_image_decoder.safetensors
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.Denoiser
params:
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
network_config:
target: sgm.modules.diffusionmodules.video_model.VideoUNet
params:
adm_in_channels: 768
num_classes: sequential
use_checkpoint: True
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2, 1]
num_res_blocks: 2
channel_mult: [1, 2, 4, 4]
num_head_channels: 64
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
spatial_transformer_attn_type: softmax-xformers
extra_ff_mix_layer: True
use_spatial_context: True
merge_strategy: learned_with_images
video_kernel_size: [3, 1, 1]
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: False
input_key: cond_frames_without_noise
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
params:
n_cond_frames: 1
n_copies: 1
open_clip_embedding_config:
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
params:
freeze: True
- input_key: fps_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: motion_bucket_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: cond_frames
is_trainable: False
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
params:
disable_encoder_autocast: True
n_cond_frames: 1
n_copies: 1
is_ae: True
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
- input_key: cond_aug
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
sampler_config:
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
params:
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
params:
sigma_max: 700.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
params:
max_scale: 2.5
min_scale: 1.0

View File

@@ -0,0 +1,146 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.18215
disable_first_stage_autocast: True
ckpt_path: checkpoints/svd_xt.safetensors
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.Denoiser
params:
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
network_config:
target: sgm.modules.diffusionmodules.video_model.VideoUNet
params:
adm_in_channels: 768
num_classes: sequential
use_checkpoint: True
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2, 1]
num_res_blocks: 2
channel_mult: [1, 2, 4, 4]
num_head_channels: 64
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
spatial_transformer_attn_type: softmax-xformers
extra_ff_mix_layer: True
use_spatial_context: True
merge_strategy: learned_with_images
video_kernel_size: [3, 1, 1]
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: False
input_key: cond_frames_without_noise
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
params:
n_cond_frames: 1
n_copies: 1
open_clip_embedding_config:
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
params:
freeze: True
- input_key: fps_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: motion_bucket_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: cond_frames
is_trainable: False
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
params:
disable_encoder_autocast: True
n_cond_frames: 1
n_copies: 1
is_ae: True
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
- input_key: cond_aug
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
first_stage_config:
target: sgm.models.autoencoder.AutoencodingEngine
params:
loss_config:
target: torch.nn.Identity
regularizer_config:
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: sgm.modules.diffusionmodules.model.Encoder
params:
attn_type: vanilla
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
decoder_config:
target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
params:
attn_type: vanilla
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
video_kernel_size: [3, 1, 1]
sampler_config:
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
params:
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
params:
sigma_max: 700.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
params:
max_scale: 3.0
min_scale: 1.5

View File

@@ -0,0 +1,129 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.18215
disable_first_stage_autocast: True
ckpt_path: checkpoints/svd_xt_image_decoder.safetensors
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.Denoiser
params:
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
network_config:
target: sgm.modules.diffusionmodules.video_model.VideoUNet
params:
adm_in_channels: 768
num_classes: sequential
use_checkpoint: True
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2, 1]
num_res_blocks: 2
channel_mult: [1, 2, 4, 4]
num_head_channels: 64
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
spatial_transformer_attn_type: softmax-xformers
extra_ff_mix_layer: True
use_spatial_context: True
merge_strategy: learned_with_images
video_kernel_size: [3, 1, 1]
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: False
input_key: cond_frames_without_noise
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
params:
n_cond_frames: 1
n_copies: 1
open_clip_embedding_config:
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
params:
freeze: True
- input_key: fps_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: motion_bucket_id
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
- input_key: cond_frames
is_trainable: False
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
params:
disable_encoder_autocast: True
n_cond_frames: 1
n_copies: 1
is_ae: True
encoder_config:
target: sgm.models.autoencoder.AutoencoderKLModeOnly
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
- input_key: cond_aug
is_trainable: False
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
sampler_config:
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
params:
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
params:
sigma_max: 700.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
params:
max_scale: 3.0
min_scale: 1.5

View File

@@ -0,0 +1,278 @@
import math
import os
from glob import glob
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from fire import Fire
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import ToTensor
from scripts.util.detection.nsfw_and_watermark_dectection import \
DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config
def sample(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
num_frames: Optional[int] = None,
num_steps: Optional[int] = None,
version: str = "svd",
fps_id: int = 6,
motion_bucket_id: int = 127,
cond_aug: float = 0.02,
seed: int = 23,
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: Optional[str] = None,
):
"""
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
"""
if version == "svd":
num_frames = default(num_frames, 14)
num_steps = default(num_steps, 25)
output_folder = default(output_folder, "outputs/simple_video_sample/svd/")
model_config = "scripts/sampling/configs/svd.yaml"
elif version == "svd_xt":
num_frames = default(num_frames, 25)
num_steps = default(num_steps, 30)
output_folder = default(output_folder, "outputs/simple_video_sample/svd_xt/")
model_config = "scripts/sampling/configs/svd_xt.yaml"
elif version == "svd_image_decoder":
num_frames = default(num_frames, 14)
num_steps = default(num_steps, 25)
output_folder = default(
output_folder, "outputs/simple_video_sample/svd_image_decoder/"
)
model_config = "scripts/sampling/configs/svd_image_decoder.yaml"
elif version == "svd_xt_image_decoder":
num_frames = default(num_frames, 25)
num_steps = default(num_steps, 30)
output_folder = default(
output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/"
)
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml"
else:
raise ValueError(f"Version {version} does not exist.")
model, filter = load_model(
model_config,
device,
num_frames,
num_steps,
)
torch.manual_seed(seed)
path = Path(input_path)
all_img_paths = []
if path.is_file():
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
all_img_paths = [input_path]
else:
raise ValueError("Path is not valid image file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)
if len(all_img_paths) == 0:
raise ValueError("Folder does not contain any images.")
else:
raise ValueError
for input_img_path in all_img_paths:
with Image.open(input_img_path) as image:
if image.mode == "RGBA":
image = image.convert("RGB")
w, h = image.size
if h % 64 != 0 or w % 64 != 0:
width, height = map(lambda x: x - x % 64, (w, h))
image = image.resize((width, height))
print(
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
)
image = ToTensor()(image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if (H, W) != (576, 1024):
print(
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
)
if motion_bucket_id > 255:
print(
"WARNING: High motion bucket! This may lead to suboptimal performance."
)
if fps_id < 5:
print("WARNING: Small fps value! This may lead to suboptimal performance.")
if fps_id > 30:
print("WARNING: Large fps value! This may lead to suboptimal performance.")
value_dict = {}
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
value_dict["cond_aug"] = cond_aug
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
writer = cv2.VideoWriter(
video_path,
cv2.VideoWriter_fourcc(*"MP4V"),
fps_id + 1,
(samples.shape[-1], samples.shape[-2]),
)
samples = embed_watermark(samples)
samples = filter(samples)
vid = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
for frame in vid:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
writer.write(frame)
writer.release()
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def load_model(
config: str,
device: str,
num_frames: int,
num_steps: int,
):
config = OmegaConf.load(config)
if device == "cuda":
config.model.params.conditioner_config.params.emb_models[
0
].params.open_clip_embedding_config.params.init_device = device
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames
)
if device == "cuda":
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval()
else:
model = instantiate_from_config(config.model).to(device).eval()
filter = DeepFloydDataFiltering(verbose=False, device=device)
return model, filter
if __name__ == "__main__":
Fire(sample)