Files
flutter_server_box/lib/data/model/server/cpu.dart
2024-04-09 16:51:00 +08:00

198 lines
5.2 KiB
Dart

import 'dart:collection';
import 'package:fl_chart/fl_chart.dart';
import 'package:toolbox/data/model/server/time_seq.dart';
import 'package:toolbox/data/res/status.dart';
const _kCap = 30;
class Cpus extends TimeSeq<List<SingleCpuCore>> {
Cpus(super.init1, super.init2);
@override
void onUpdate() {
_coresCount = now.length;
_totalDelta = now[0].total - pre[0].total;
_user = _getUser();
_sys = _getSys();
_iowait = _getIowait();
_idle = _getIdle();
_updateSpots();
//_updateRange();
}
double usedPercent({int coreIdx = 0}) {
if (now.length != pre.length) return 0;
final idleDelta = now[coreIdx].idle - pre[coreIdx].idle;
final totalDelta = now[coreIdx].total - pre[coreIdx].total;
final used = idleDelta / totalDelta;
return used.isNaN ? 0 : 100 - used * 100;
}
int _coresCount = 0;
int get coresCount => _coresCount;
int _totalDelta = 0;
int get totalDelta => _totalDelta;
double _user = 0;
double get user => _user;
double _getUser() {
if (now.length != pre.length) return 0;
final delta = now[0].user - pre[0].user;
final used = delta / totalDelta;
return used.isNaN ? 0 : used * 100;
}
double _sys = 0;
double get sys => _sys;
double _getSys() {
if (now.length != pre.length) return 0;
final delta = now[0].sys - pre[0].sys;
final used = delta / totalDelta;
return used.isNaN ? 0 : used * 100;
}
double _iowait = 0;
double get iowait => _iowait;
double _getIowait() {
if (now.length != pre.length) return 0;
final delta = now[0].iowait - pre[0].iowait;
final used = delta / totalDelta;
return used.isNaN ? 0 : used * 100;
}
double _idle = 0;
double get idle => _idle;
double _getIdle() => 100 - usedPercent();
void _coresLoop(void Function(int i) callback) {
/// Only update the entire cpu when [coresCount] > 4, or the chart will be too crowded
// final onlyCalcSingle = coresCount > 4;
// final maxIdx = onlyCalcSingle ? 1 : coresCount;
// for (var i = onlyCalcSingle ? 0 : 1; i < maxIdx; i++) {
// callback(i);
// }
/// Only use cpu0
callback(0);
}
/// [core1, core2]
/// core1: [FlSpot(0, 10), FlSpot(1, 20), FlSpot(2, 30)]
final _spots = <Fifo<FlSpot>>[];
List<Fifo<FlSpot>> get spots => _spots;
void _updateSpots() {
_coresLoop((i) {
if (i >= _spots.length) {
_spots.add(Fifo(capacity: _kCap));
} else {
final item = _spots[i];
final spot = FlSpot(item.count.toDouble(), usedPercent(coreIdx: i));
item.add(spot);
}
});
}
// var _rangeX = Range<double>(0.0, _kCap.toDouble());
// Range<double> get rangeX => _rangeX;
// // var _rangeY = Range<double>(0.0, 100.0);
// // Range<double> get rangeY => _rangeY;
// void _updateRange() {
// double minX = 0;
// double maxX = 0;
// _coresLoop((i) {
// final fifo = _spots[i];
// if (fifo.isEmpty) return;
// final first = fifo.first.x;
// final last = fifo.last.x;
// if (first > minX) minX = first;
// if (last > maxX) maxX = last;
// });
// _rangeX = Range(minX, maxX);
// // double? minY, maxY;
// // for (var i = 1; i < now.length; i++) {
// // final item = _spots[i];
// // if (item.isEmpty) continue;
// // final first = item.first.y;
// // final last = item.last.y;
// // if (minY == null || first < minY) minY = first;
// // if (maxY == null || last > maxY) maxY = last;
// // }
// // if (minY != null && maxY != null) _rangeY = Range(minY, maxY);
// }
}
class SingleCpuCore extends TimeSeqIface<SingleCpuCore> {
final String id;
final int user;
final int sys;
final int nice;
final int idle;
final int iowait;
final int irq;
final int softirq;
SingleCpuCore(
this.id,
this.user,
this.sys,
this.nice,
this.idle,
this.iowait,
this.irq,
this.softirq,
);
int get total => user + sys + nice + idle + iowait + irq + softirq;
@override
bool same(SingleCpuCore other) => id == other.id;
static List<SingleCpuCore> parse(String raw) {
final List<SingleCpuCore> cpus = [];
for (var item in raw.split('\n')) {
if (item == '') break;
final id = item.split(' ').firstOrNull;
if (id == null) continue;
final matches = item.replaceFirst(id, '').trim().split(' ');
cpus.add(
SingleCpuCore(
id,
int.parse(matches[0]),
int.parse(matches[1]),
int.parse(matches[2]),
int.parse(matches[3]),
int.parse(matches[4]),
int.parse(matches[5]),
int.parse(matches[6]),
),
);
}
return cpus;
}
}
final _bsdCpuPercentReg = RegExp(r'(\d+\.\d+)%');
/// TODO: Change this implementation to parse cpu status on BSD system
///
/// [raw]:
/// CPU usage: 14.70% user, 12.76% sys, 72.52% idle
Cpus parseBsdCpu(String raw) {
final percents = _bsdCpuPercentReg
.allMatches(raw)
.map((e) => double.parse(e.group(1) ?? '0') * 100)
.toList();
if (percents.length != 3) return InitStatus.cpus;
final init = InitStatus.cpus;
init.add([
SingleCpuCore('cpu', percents[0].toInt(), 0, 0,
percents[2].toInt() + percents[1].toInt(), 0, 0, 0),
]);
return init;
}