mirror of
https://github.com/aljazceru/enclava.git
synced 2025-12-17 07:24:34 +01:00
132 lines
4.3 KiB
Python
132 lines
4.3 KiB
Python
"""
|
|
Test LLM API endpoints.
|
|
"""
|
|
import pytest
|
|
from httpx import AsyncClient
|
|
from unittest.mock import patch, AsyncMock
|
|
|
|
|
|
class TestLLMEndpoints:
|
|
"""Test LLM API endpoints."""
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_chat_completion_success(self, client: AsyncClient):
|
|
"""Test successful chat completion."""
|
|
# Mock the LiteLLM client response
|
|
mock_response = {
|
|
"choices": [
|
|
{
|
|
"message": {
|
|
"content": "Hello! How can I help you today?",
|
|
"role": "assistant"
|
|
}
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": 10,
|
|
"completion_tokens": 15,
|
|
"total_tokens": 25
|
|
}
|
|
}
|
|
|
|
with patch("app.services.litellm_client.LiteLLMClient.create_chat_completion") as mock_chat:
|
|
mock_chat.return_value = mock_response
|
|
|
|
response = await client.post(
|
|
"/api/v1/llm/chat/completions",
|
|
json={
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "Hello"}
|
|
]
|
|
},
|
|
headers={"Authorization": "Bearer test-api-key"}
|
|
)
|
|
|
|
assert response.status_code == 200
|
|
data = response.json()
|
|
assert "choices" in data
|
|
assert data["choices"][0]["message"]["content"] == "Hello! How can I help you today?"
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_chat_completion_unauthorized(self, client: AsyncClient):
|
|
"""Test chat completion without API key."""
|
|
response = await client.post(
|
|
"/api/v1/llm/chat/completions",
|
|
json={
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "Hello"}
|
|
]
|
|
}
|
|
)
|
|
|
|
assert response.status_code == 401
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_embeddings_success(self, client: AsyncClient):
|
|
"""Test successful embeddings generation."""
|
|
mock_response = {
|
|
"data": [
|
|
{
|
|
"embedding": [0.1, 0.2, 0.3],
|
|
"index": 0
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": 5,
|
|
"total_tokens": 5
|
|
}
|
|
}
|
|
|
|
with patch("app.services.litellm_client.LiteLLMClient.create_embedding") as mock_embeddings:
|
|
mock_embeddings.return_value = mock_response
|
|
|
|
response = await client.post(
|
|
"/api/v1/llm/embeddings",
|
|
json={
|
|
"model": "text-embedding-ada-002",
|
|
"input": "Hello world"
|
|
},
|
|
headers={"Authorization": "Bearer test-api-key"}
|
|
)
|
|
|
|
assert response.status_code == 200
|
|
data = response.json()
|
|
assert "data" in data
|
|
assert len(data["data"][0]["embedding"]) == 3
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_budget_exceeded(self, client: AsyncClient):
|
|
"""Test budget exceeded scenario."""
|
|
with patch("app.services.budget_enforcement.BudgetEnforcementService.check_budget_compliance") as mock_check:
|
|
mock_check.side_effect = Exception("Budget exceeded")
|
|
|
|
response = await client.post(
|
|
"/api/v1/llm/chat/completions",
|
|
json={
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "Hello"}
|
|
]
|
|
},
|
|
headers={"Authorization": "Bearer test-api-key"}
|
|
)
|
|
|
|
assert response.status_code == 402 # Payment required
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_model_validation(self, client: AsyncClient):
|
|
"""Test model validation."""
|
|
response = await client.post(
|
|
"/api/v1/llm/chat/completions",
|
|
json={
|
|
"model": "invalid-model",
|
|
"messages": [
|
|
{"role": "user", "content": "Hello"}
|
|
]
|
|
},
|
|
headers={"Authorization": "Bearer test-api-key"}
|
|
)
|
|
|
|
assert response.status_code == 400 |