Go to file
Claude 05cfa58228 Add comprehensive codebase review document
This review covers:
- Complete architecture analysis
- Database schema deep dive (18 models)
- Security assessment (75/100 score)
- API routes analysis (155+ endpoints)
- Frontend analysis (147 TS files)
- AI/ML integration review (LLM, RAG, embeddings)
- Module system analysis
- Testing coverage (525 tests)
- Critical issues and recommendations

Key Findings:
- Overall Score: 7.2/10 (Good - Production-ready with improvements)
- 10 Critical security issues identified
- 20 High priority issues documented
- Production-ready after P0 fixes (~30 hours)

Critical Issues:
- Missing CSRF protection
- No authentication on platform endpoints
- Weak bcrypt configuration (6 rounds)
- Missing database indexes on high-volume tables
- Frontend XSS vulnerabilities

Recommendations organized by priority (P0, P1, P2) with time estimates
2025-11-10 15:12:20 +00:00
2025-09-17 11:58:23 +02:00
2025-10-16 17:53:09 +02:00
2025-10-16 17:53:09 +02:00
2025-09-23 15:26:54 +02:00
2025-10-16 17:53:09 +02:00
2025-09-18 11:12:00 +02:00
2025-08-25 17:13:15 +02:00
2025-08-27 18:26:43 +02:00

Enclava

Confidential AI Platform for businesses

Enclava is a comprehensive AI platform that makes privacy practical. It provides easy to create openai compatible chatbots and API endpoints with knowledge base access (RAG). All in a completely confidential way through privatemode.ai

Key Features

  • AI Chatbots - Customizable chatbots with prompt templates and RAG integration (openai compatible)
  • RAG System - Document upload, processing, and semantic search with Qdrant
  • TEE Security - Privacy-protected LLM inference via confidential computing
  • OpenAI Compatible - Standard API endpoints for seamless integration with existing tools
  • Budget Management - Built-in spend tracking and usage limits

Quick Start

Prerequisites

1. Clone Repository

git clone <repository-url>
cd enclava

2. Configure Environment

# Copy example environment file
cp .env.example .env

# Edit .env with your settings
vim .env

Required Configuration:

# Security
JWT_SECRET=your-super-secret-jwt-key-here-change-in-production

# PrivateMode.ai API Key (optional but recommended)
PRIVATEMODE_API_KEY=your-privatemode-api-key

# Base URL for CORS and frontend
BASE_URL=localhost

3. Deploy with Docker

# Start all services
docker compose up --build

# Or run in background
docker compose up --build -d

4. Access Application

5. Default Login

  • Username: admin
  • Password: admin123

Change default credentials immediately in production!

Configuration

Environment Variables

See .env.example for all available configuration options.

Support

  • Documentation: docs.enclava.ai
  • Issues: Use the GitHub issue tracker
  • Security: Report security issues privately

Description
No description provided
Readme 2.8 MiB
Languages
Python 72.3%
TypeScript 26.9%
Shell 0.3%
CSS 0.3%
JavaScript 0.1%